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Basics of Decision Making

• We’ll start by considering the most simple of decision-
making formulations

• Let’s suppose that Reality is in one of two states, which 
we denote as 0 or 1

• We don’t observe this state, but we do obtain Data that is 
drawn from a distribution that depends on whether the 
state is 0 or 1

• We make a Decision based on the Data, which we 
denote as 0 or 1

• We can think of the Decision as our best guess as to the 
state of Reality or, more generally, as an action we think 
is best given our guess of the state of Reality
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Rough goal:  lots of green outcomes, few red outcomes!



Examples: How Serious are FP and FN (and 

How Desirable are TP and TN)?

• Medical:  0 = no disease, 1 = disease

• Commerce: 0 = no fraud, 1 = fraud

• Physics: 0 = no Higgs boson, 1 = Higgs boson

• Social network: 0 = no link, 1 = link

• Self-driving car: 0 = no pedestrian, 1 = pedestrian

• Search: 0 = not relevant, 1 = relevant

• Oil-Well Drilling:  0 = no oil, 1 = oil

• In real-world domains, there are many, many 
complications that arise

University of California, Berkeley



Towards a Statistical Framework

• Although the two-by-two table is useful conceptually, it’s 
not clear how to make use of it in a real problem, 
because we don’t know Reality

• We need to move towards a statistical framework, 
where we consider not just one decision, but a set of 
related decisions
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Towards a Statistical Framework

• Let’s now imagine that we not only make a decision, 
but we build a decision-making algorithm

• We want to evaluate the algorithm not just on one 
problem, but on a set of related problems

• Concretely, we may have a collection of hypothesis-
testing problems, where we repeatedly decide whether 
to accept the null or accept the alternative

• Or we may have a set of classification decisions, where 
we repeatedly classify data points into one of two 
classes
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Towards a Statistical Framework

• Our language will start to involve rates and probabilities

• Indeed, the variables        ,       ,       , and        are 
random variables

• In just what sense they are random will need to be 
made clear (e.g., is the state of Reality random, is the 
Decision random, is     random?) 
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Comments on the Row-Wise Rates

• They can be thought of as estimates of conditional 
probabilities

– e.g., sensitivity approximates 
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Comments on the Row-Wise Rates

• They can be thought of as estimates of conditional 
probabilities

– e.g., sensitivity approximates 

• As such, they are not dependent on the prevalence
(i.e., the probabilities of the two states of Reality in the 
population)

• They are the kinds of quantities that are the focus of 
Neyman-Pearson inferential theory, which we’ll review 
later

– specificity = 1 – Type I error rate

– sensitivity = 1 – Type II error rate = power
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Towards Inference

• We’d like to have have high sensitivity and high 
specificity

– but in general there is a tradeoff (see whiteboard drawings)

– we have to figure out how to manage the tradeoff
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Towards Inference

• We’d like to have have high sensitivity and high 
specificity

– but in general there is a tradeoff (see whiteboard drawings)

– we have to figure out how to manage the tradeoff

• Neyman and Pearson (1932) formulated this problem 
as a constrained optimization problem:

– maximize the power while constraining the false-positive rate to be 
under some fixed number (e.g., .05)

– we’re smudging over the distinction between probabilities and 
rates, which we’ll clarify later

– a very fruitful idea, and sometimes the right idea, but not to be 
viewed as written in stone
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Frequentism

• We want to be able to say that a procedure works “on 
average”

– or possibly “with high probability”

• Where does the randomness come from to be able to 
talk about an “average” or a “probability”?

• The frequentist idea (due to Neyman, Wald, and others) 
is to assume that we don’t just have one dataset, but 
rather we repeatedly draw datasets independently from 
the population

– and the randomness comes from this sampling process
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Frequentist Hypothesis Testing

• This is what one learns in classical statistics classes

• The basic idea is to specify, via a probability 
distribution, what data one expects to see under the 
null hypothesis

– and similarly for the alternative hypothesis

• One then collects actual data and assesses, with some 
algorithm, how well the data fit that null distribution

• If the answer is “not so much,” then one rejects the null

• One then proves that such a decision-making algorithm 
will perform well on average

– e.g., having a controlled probability of a Type I error
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Bayesian Hypothesis Testing

• Has risen, fallen and risen again many times over history

• The basic idea is to specify, via a probability distribution, 
what data one expects to see under the null hypothesis 
and similarly for the alternative hypothesis

• One places a prior probability on the null and the 
alternative 

• One now has all the ingredients to compute a conditional 
probability of the hypothesis given the data

• One thresholds that probability to make the decision
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Comparisons

• Bayesian perspective
– conditional perspective--inferences should be made conditional on the 

actual observed data, not on possible data one could have observed

– natural in the setting of a long-term project with a domain expert

– the optimist---let’s make the best use possible of our sophisticated 
inferential tool

• Frequentist perspective
– unconditional perspective---inferential procedures should give good 

answers in repeated use

– natural in the setting of writing software that will be used by many 
people for many problems

– the pessimist--let’s protect ourselves against bad decisions given that 
our inferential procedure is a simplification of reality
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Comparisons

• Bayesian perspective
– conditional perspective--inferences should be made conditional on the 

actual observed data, not on possible data one could have observed

– natural in the setting of a long-term project with a domain expert

– the optimist---let’s make the best use possible of our sophisticated 
inferential tool

• Frequentist perspective
– unconditional perspective---inferential procedures should give good 

answers in repeated use

– natural in the setting of writing software that will be used by many 
people for many problems

– the pessimist--let’s protect ourselves against bad decisions

• Q: Are “bias” and “variance” frequentist or Bayesian?
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• Define a family of probability models for the data , indexed by a parameter

• Define a procedure that operates on the data to make a decision

• Define a loss function:

• Example: 0/1 loss

University of California, Berkeley

R
e
a
li
ty

0
1

Decision

0 1

(Reality)

(Decision)



Decision-Theoretic Framework

• Define a family of probability models for the data , indexed by a parameter

• Define a procedure that operates on the data to make a decision

• Define a loss function:

• Example: 0/1 loss
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Decision-Theoretic Framework

• Define a family of probability models for the data , indexed by a parameter

• Define a procedure that operates on the data to make a decision

• Define a loss function:

• Example: L2 loss
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arguments are unknown
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Decision-Theoretic Framework

• Define a family of probability models for the data    , indexed by a parameter

• Define a procedure           that operates on the data to make a decision

• Define a loss function:

• The goal is to use the loss function to compare procedures, but both of its 
arguments are unknown
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Risk Functions

• The frequentist risk:

• The Bayesian posterior risk:
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Risk Functions

• The frequentist risk:

• The Bayesian posterior risk:

• A fun bonus exercise: If we take an expectation of            with respect to    , 
or an expectation of            with respect to    , we get a constant known as 
the “Bayes risk”    
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Examples (on the White Board)

• The risk under the 0/1 loss

• The risk under the L2 loss
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Comparisons

• Both inferential frameworks are useful

• It’s akin to “waves” vs. “particles” in physics
– they’re both correct in some sense

– they are complementary in many ways

– but they also conflict in some serious ways

• Understanding Bayes/frequentist relationships can help you 
become a real problem solver, not just a person who runs 
downloads software and runs data analysis procedures
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• Let’s now consider a column-wise perspective
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Some Column-Wise Rates
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Comments on the Column-Wise Rates

• They can be thought of as estimates of conditional 
probabilities

– e.g., false discovery rate approximates 

• They are dependent on the prevalence (i.e., the 
probabilities of the two states of Reality in the 
population), via Bayes’ Theorem

– as such, they are more Bayesian

• This is arguably a good thing, as we’ll see on the next 
slide
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A Bayesian Calculation

• Let’s calculate on the white board 
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Run 10,000 
different,

independent
A/B tests

9,900 true
nulls

100 non-
nulls

Type I error rate (per test) = 0.05

495 false 
discoveries

80 true 
discoveries

“false discovery

rate” = 495/575

Power (per test) = 0.80



Run 10,000 
different,

independent
A/B tests

9,900 true
nulls

100 non-
nulls

Type I error rate (per test) = 0.05

495 false 
discoveries

80 true 
discoveries

“false discovery

rate” = 495/575

Power (per test) = 0.80

(NB: We’re again not being rigorous at this point; FDR is 
actually an expectation of this proportion.  We’ll do it right 
anon.)



Back to Inference

• Can we develop general frameworks that allow us to 
control column-wise quantities like the false-discovery 
rate (FDR)?

– in a similar way as Neyman-Pearson controls the false-positive 
rate

• To be continued…
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