
Regression and 
Linear Models
First – a review of known material
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In Data 8, you talked about 
generating the regression line.

Given scalar data y and x, find 
m and b that minimizes the 
mean squared error (a.k.a. L2 
Loss).

The Regression Line (Data 8)

 



Regression
� Estimating relationship between X and Y.
� Y is a quantitative value. 
� X can be almost anything …

X
Y

Domain Model



Least Squares Linear Regression
One of the most widely used tools in machine learning and data science 

Linear Model

Loss Minimization

Linear in the Parameters

Squared Loss
Feature Functions

We will return to 
solving this soon!



Linear Models and Feature Functions

For Example:
Features:

Linear in the Parameters

Feature Functions

Designing the feature functions is a big part of machine 
learning and data science.

Feature Functions
� capture domain knowledge
� substantial contribute to expressivity (and complexity)

Adding a “constant” feature 
function 

is a common method to 
introduce an offset (also 
sometimes called bias) term.

Model:
Domain:



Linear Models and Feature Functions

For Example:

Linear in the Parameters

Feature Functions

Designing the feature functions is a big part of machine 
learning and data science.

Feature Functions
� capture domain knowledge
� substantial contribute to expressivity (and complexity)

 
 

Model:
Domain:

Features:

 

 

 

Indicator functions

are a common method to 
transform qualitative data 
into quantitative data.

 



Linear Models and Feature Functions
Linear in the Parameters

Feature Functions

Question: Can a linear model do a 
good job of fitting y and x (to the right)?

A. Yes
B. No
C. Not sure 



Linear Models and Feature Functions

Yes:
Features:

🡺 This is a linear model!

Linear in the parameters

Linear in the Parameters

Feature Functions



Linear Models and Feature Functions

For Example:

Features:
🡺 This is a linear model!

Linear in the parameters

Linear in the Parameters

Feature Functions



Linear Models and Feature Functions
Linear in the Parameters

Feature Functions

Designing feature functions is a big part of machine learning 
and data science.

Feature Functions
� capture domain knowledge
� contribute to expressivity (and complexity)



Loss Minimization for
Linear Models



Linear Models in Matrix Notation
We discussed how our model 
takes an observation and 
produces a prediction.
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Linear Models in Matrix Notation
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Our prediction for record #i is a linear 
combination of all d features of record #i.



The Feature Matrix

Domain

uid age state hasBought review

0 32 NY True ”Meh.”

42 50 WA True ”Worked out of 
the box …”

57 16 CA NULL “Hella tots lit...”

AK … NY … WY age hasBought hasBought 
missing

0 … 1 … 0 32 1 0

0 … 0 … 0 50 1 0

0 … 0 … 0 16 0 1

Entirely Quantitative Values

DataFrame (n x c)



The Feature Matrix
Entirely Quantitative Values

DataFrame

= =
Rows of the 𝚽 matrix 
correspond to records 
(observations).

Columns of the 𝚽 matrix 
correspond to features.

AK … NY … WY age hasBought hasBought 
missing

0 … 1 … 0 32 1 0

0 … 0 … 0 50 1 0

0 … 0 … 0 16 0 1

Domain

uid age state hasBought review

0 32 NY True ”Meh.”

42 50 WA True ”Worked out of 
the box …”

57 16 CA NULL “Hella tots lit...”

n

d: row i of matrix A.

: column j of matrix A.

Notation Guide



Making Predictions

Entirely Quantitative Values

DataFrame

= =
Rows of the 𝚽 matrix 
correspond to records.

Columns of the 𝚽 matrix 
correspond to features.

= =

Prediction

AK … NY … WY age hasBought hasBought 
missing

0 … 1 … 0 32 1 0

0 … 0 … 0 50 1 0

0 … 0 … 0 16 0 1

uid age state hasBought review

0 32 NY True ”Meh.”

42 50 WA True ”Worked out of 
the box …”

57 16 CA NULL “Hella tots lit...”

Domain

n

d

n

d

 



Summary of Notation

Domain

Feature 
Engineering

Linear
Regression



Loss Functions
� Loss function: a function that characterizes the cost, error, or 

loss resulting from a particular choice of model or model 
parameters.

� Many definitions of loss functions and the choice of loss 
function affects the accuracy and computational cost of 
estimation.

� The choice of loss function depends on the estimation task
� quantitative (e.g., tip) or qualitative variable (e.g., political affiliation)
� Do we care about the outliers?
� Are all errors equally costly? (e.g., false negative on cancer test)



Squared Loss

� Also known as the the L2 loss (pronounced “el two”)

� Reasonable?
� θ = y 🡺 good prediction 🡺 good fit 🡺 no loss!
� θ far from y 🡺 bad prediction 🡺 bad fit 🡺 lots of loss!

The predicted value

An observed data point

The “error” in 
our prediction

Widely used loss!



Absolute Loss

� Also known as the the L1 loss (pronounced “el one”)

� Reasonable?
� θ = y 🡺 good prediction 🡺 good fit 🡺 no loss!
� θ far from y 🡺 bad prediction 🡺 bad fit 🡺 some loss  

It sounds worse than it is …

Absolute value



Can you think of another 
Loss Function?



Huber Loss
� Parameter 𝛼 that we need to 

choose.

� Reasonable?
� θ = y 🡺 good prediction 

🡺 good fit 🡺 no loss!
� θ far from y 🡺 bad prediction

🡺 bad fit 🡺 some loss 

� A hybrid of the L2 and L1 losses…



The Loss Function in Matrix Notation
 



The Loss Function in Matrix Notation
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To minimize, we need to compute the gradient and set it equal to zero.
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Minimizing the Loss

 

Instead, let’s do everything natively in matrix notation.

 

 



Loss minimization

� Review these slides on your own (you can watch former 
D100 lectures if useful).



Some Useful Matrix Calculus Rules

 

Let’s discuss a couple of rules, that are useful to us.

 

   

 
 

Transpose because we want 
gradient to be a column vector!



Some Useful Matrix Calculus Rules

Useful Matrix Derivative Rules:

(1)

 



“Normal Equation”

Optimizing the Loss Algebraically

Taking the Gradient of the loss

Setting the gradient equal to 0 and solving for θ:

Rule 1 Rule 2 Useful Matrix Derivative Rules:

(2)

(1)

Deriving the Normal Equation



� There is an alternate derivation for the normal equation.

� This one provides much more intuition, but requires a 
deeper understanding of linear algebra.

� Understanding this is required for the course. Will vary 
widely in how much effort it takes to fully grok.

Optimizing the Loss Geometrically



� Our observations Y 
form a single 
vector in an 
n-dimensional 
space.

� Maybe it’s the 
observed weight 
of all n people in 
Berkeley: [120, 190, 
210, 9.3, …]

Optimizing the Loss Geometrically

Yn dimensional space



�  

Optimizing the Loss Geometrically

Yn dimensional space
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Optimizing the Loss Geometrically

Yn dimensional space

d dim
ensio

nal su
bsp

ace

 

 



�  

Optimizing the Loss Geometrically
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Optimizing the Loss Geometrically

Yn dimensional space
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More on this in discussion!
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Optimizing the Loss Geometrically

Yn dimensional space
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Geometric Derivation: Not Bonus Material

“Normal Equation”

Y

Definition of orthogonality 

n

d

n

1

Columns space of 𝚽

=

Derivationd dim
ensio
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n dimensional space

We decided that this is too exciting to not know.

n x 1 residuald x n



The Normal Equation

 

Optimizing Linear models is therefore very easy:
�  

� No collinear columns.
� Why? Prove yourself, or see 

https://www.youtube.com/watch?v=ESSMQH6Y5OA.
� Don’t have full rank? Add regularization (see D100).

https://www.youtube.com/watch?v=ESSMQH6Y5OA

