Regression and Linear Models First – a review of known material Slides: Data 100, Joey Gonzalez

# The Regression Line (Data 8)

In Data 8, you talked about generating the regression line.

Given scalar data y and x, find m and b that minimizes the mean squared error (a.k.a. L2 Loss).

$$Loss = (y - (mx + b))^2$$



# Regression

- Estimating relationship between X and Y.
  - □ Y is a quantitative value.
  - □ X can be almost anything ...



## Least Squares Linear Regression

One of the most widely used tools in machine learning and data science





#### For Example:

Domain: 
$$x \in \mathbb{R}$$
  
Model:  $f_{\theta}(x) = \theta_1 x + \theta_2$ 

 $\Pi$ 

Features:

Adding a "constant" feature function  $\phi_2(x) = 1$ 

is a common method to introduce an **offset** (also sometimes called **bias**) term.



#### For Example:

Domain:  $x \in \{False, True\}^2 \times \mathcal{R}$ Model:  $y_i = \theta_1^* + \theta_2^* \mathbb{I}(x_i \text{ is 'Male'}) + \theta_3^* \mathbb{I}(x_i \text{ is 'Smoker'}) + \theta_4^* \text{size}(x_i)$ 

Features:

 $\phi_1(x) = \mathbb{I}(x \text{ is 'Male'})$  $\phi_2(x) = \mathbb{I}(x \text{ is 'Smoker'})$  $\phi_3(x) = size(x)$  Indicator functions

 $\phi_1(x) = \mathbb{I}(x \text{ is 'Male'})$ 

are a common method to transform qualitative data into quantitative data.



Question: Can a linear model do a good job of fitting y and x (to the right)?

A. YesB. NoC. Not sure



$$\hat{y} = f_{\theta}(x) = \sum_{j=1}^{d} \theta_{j} \phi_{j}(x)$$
Feature Functions

Yes: 
$$x \in \mathbb{R}$$
  $f_{\theta}(x) = \theta_1 x + \theta_2 \sin(x) + \theta_3 \sin(5x)$ 

Features:

$$\phi_1(x) = x$$
  
 $\phi_2(x) = \sin(x)$   
 $\phi_3(x) = \sin(5x)$ 

This is a linear model!

Linear in the parameters

$$\hat{y} = f_{\theta}(x) = \sum_{j=1}^d \theta_j \phi_j(x)$$
 Feature Functions

For Example:  $x \in \mathbb{R}^2$ 

$$f_{\theta}(x) = \theta_1 x_1 x_2 + \theta_2 \cos(x_2 x_1) + \theta_3 \mathbb{I}[x_1 > x_2]$$

Features:





Designing feature functions is a big part of machine learning and data science.

#### **Feature Functions**

- capture domain knowledge
- Contribute to expressivity (and complexity)

# Loss Minimization for Linear Models

## Linear Models in Matrix Notation

We discussed how our model takes an observation and produces a prediction.

We can also express this in matrix notation:

- $\phi(x)$  is a vector of d features.
- $\theta$  is a vector of d parameters.

$$\hat{y} = f_{\theta}(x) = \sum_{j=1}^{d} \theta_j \phi_j(x)$$

$$\hat{y} = f_{\theta}(x) = \phi(x)^T \theta$$



## Linear Models in Matrix Notation

Often we'll make predictions over entire datasets: For each  $x_i$ , we'll predict  $y_i$  using our model.

We can also express this in matrix notation:

- $\phi(X)$  is an n x d matrix of features.
- $\theta$  is a vector of d parameters.
- $\hat{Y}$  is a vector of n predictions.

Our prediction for record #i is a linear combination of all d features of record #i.

For notational convenience, we'll often replace  $\phi(X)$  by the "feature matrix"  $\Phi$ .

$$\widehat{y}_i = f_{\theta}(x) = \sum_{j=1}^d \theta_j \phi_j(x_i)$$

$$\hat{Y} = f_{\theta}(x) = \phi(X)\theta$$



 $\hat{Y} = \Phi \theta$ 

# The Feature Matrix $\Phi_{\phi}$



#### X DataFrame (n x c)

| uid | age | state | hasBought | review                  |
|-----|-----|-------|-----------|-------------------------|
| 0   | 32  | NY    | True      | "Meh."                  |
| 42  | 50  | WA    | True      | "Worked out of the box" |
| 57  | 16  | СА    | NULL      | "Hella tots lit"        |

| $\mathbb{R}^{n \times d}$ |
|---------------------------|
|                           |

| AK |     | NY | ••• | WY | age | hasBought | hasBought<br>missing |
|----|-----|----|-----|----|-----|-----------|----------------------|
| 0  | ••• | 1  |     | 0  | 32  | 1         | 0                    |
| 0  | ••• | 0  | ••• | 0  | 50  | 1         | 0                    |
| 0  | ••• | 0  | ••• | 0  | 16  | 0         | 1                    |

Entirely **Quantitative** Values

# The Feature Matrix $\,\Phi\,$

| AK |     | NY | ••• | WY | age | hasBought | hasBought<br>missing |
|----|-----|----|-----|----|-----|-----------|----------------------|
| 0  | ••• | 1  | ••• | 0  | 32  | 1         | 0                    |
| 0  | ••• | 0  | ••• | 0  | 50  | 1         | 0                    |
| 0  | ••• | 0  |     | 0  | 16  | 0         | 1                    |

Entirely **Quantitative** Values



**Rows** of the  $\Phi$  matrix correspond to records (observations).

Columns of the  $\Phi$  matrix correspond to features.



## Summary of Notation



## Loss Functions

- Loss function: a function that characterizes the cost, error, or loss resulting from a particular choice of model or model parameters.
- Many definitions of loss functions and the choice of loss function affects the accuracy and computational cost of estimation.
- The choice of loss function depends on the estimation task
  - a quantitative (e.g., tip) or qualitative variable (e.g., political affiliation)
  - Do we care about the outliers?
  - □ Are all errors equally costly? (e.g., false negative on cancer test)



□ Also known as the the  $L^2$  loss (pronounced "el two")

#### □ Reasonable?

- $\square \quad \Theta = y \square \text{ good prediction } \square \text{ good fit } \square \text{ no loss!}$
- $\square$   $\Theta$  far from y  $\square$  bad prediction  $\square$  bad fit  $\square$  lots of loss!



Also known as the the  $L^1$  loss (pronounced "el one")

#### Reasonable?

- $\square$   $\theta = y \square$  good prediction  $\square$  good fit  $\square$  no loss!
- $\square$   $\theta$  far from y  $\square$  bad prediction  $\square$  bad fit  $\square$  some loss

# Can you think of another Loss Function?



$$L_{\alpha}(\theta, y) = \begin{cases} \frac{1}{2} (y - \theta)^{2} & |y - \theta| < \alpha \\ \alpha (|y - \theta| - \frac{\alpha}{2}) & \text{otherwise} \end{cases}$$

## Huber Loss

- D Parameter  $\alpha$  that we need to choose.
- Reasonable?
  - $\Box \quad \Theta = y \ \Box \text{ good prediction} \\ \Box \text{ good fit } \Box \text{ no loss!}$
  - $\Box \quad \theta \text{ far from y } \Box \text{ bad prediction} \\ \Box \text{ bad fit } \Box \text{ some loss}$
- A hybrid of the L2 and L1 losses...



## The Loss Function in Matrix Notation

$$L(\theta) = \frac{1}{n} \sum_{i=1}^{n} \left( y_i - \sum_{j=1}^{d} \theta_j \phi_j(x_i) \right)^2 = \frac{1}{n} (Y - \hat{Y})^T (Y - \hat{Y})$$
$$= \frac{1}{n} (Y - \Phi \theta)^T (Y - \Phi \theta)$$

$$= \frac{1}{n} \left( Y^T Y - 2Y^T \Phi \theta + \theta^T \Phi^T \Phi \theta \right)$$

## The Loss Function in Matrix Notation



To minimize, we need to compute the gradient and set it equal to zero.

## Minimizing the Loss

$$L(\theta) = \frac{1}{n} \left( Y^T Y - 2Y^T \Phi \theta + \theta^T \Phi^T \Phi \theta \right)$$

$$\nabla_{\theta} \mathcal{L}(\theta) = \left[\frac{\partial \mathcal{L}(\theta)}{\partial \theta_{1}}, \frac{\partial \mathcal{L}(\theta)}{\partial \theta_{2}}, \dots, \frac{\partial \mathcal{L}(\theta)}{\partial \theta_{d}}\right] = [0, 0, \dots, 0]$$

Could expand out  $L(\theta)$  and do calculus + algebra, but this would be incredibly tedious! (might be worth doing to test your understanding).  $L(\theta) = \frac{1}{n} \left( (y_1^2 + y_2^2 + \cdots + y_n^2) - 2((y_1\phi_{11} + y_2\phi_{21} + \cdots + y_n\phi_{n1})\theta_1 + \cdots) + \cdots \right)$ 

Instead, let's do everything natively in matrix notation.

## Loss minimization

 Review these slides on your own (you can watch former D100 lectures if useful).

## Some Useful Matrix Calculus Rules

Let's discuss a couple of rules, that are useful to us.

First:  $\nabla_{\theta}(A\theta) = A^T$ , where A and  $\theta$  are 1 x d and d x 1, respectively.

$$\nabla_{\theta}(A\theta) = \left[\frac{\partial(A\theta)}{\partial\theta_{1}}, \frac{\partial(A\theta)}{\partial\theta_{2}}, \dots, \frac{\partial(A\theta)}{\partial\theta_{n}}\right]^{T} \qquad \text{Transpose because we want} \\ = \left[\frac{\partial(a_{1}\theta_{1} + a_{2}\theta_{2} + \dots + a_{d}\theta_{d})}{\partial\theta_{1}}, \dots \frac{\partial(a_{1}\theta_{1} + a_{2}\theta_{2} + \dots + a_{d}\theta_{d})}{\partial\theta_{d}}\right]^{T} \\ = [a_{1}, a_{2}, \dots, a_{n}]^{T} = A^{T}$$

## Some Useful Matrix Calculus Rules

Second:  $\nabla_{\theta}(\theta^T A \theta) = A \theta + A^T \theta$ , where A and  $\theta$  are d x d and d x 1.

Proof is not hard, but a bit tedious. Not shown here. Similar to first proof.

Useful Matrix Derivative Rules:

(1) 
$$\nabla_{\theta} \left( A \theta \right) = A^T$$

## Optimizing the Loss Algebraically

Deriving the Normal Equation

$$\begin{split} L(\theta) &= \frac{1}{n} \left( Y^T Y - 2Y^T \Phi \theta + \theta^T \Phi^T \Phi \theta \right) \\ \text{Rule / Rule / Rule$$

Setting the gradient equal to 0 and solving for  $\theta$ :

$$0 = -\frac{2}{n}\Phi^T Y + \frac{2}{n}\Phi^T \Phi\theta \quad \longrightarrow$$

Useful Matrix Derivative Rules:

(1) 
$$\nabla_{\theta} (A\theta) = A^{T}$$
  
(2)  $\nabla_{\theta} (\theta^{T} A \theta) = A\theta + A^{T} \theta$ 

$$\hat{\theta} = \left(\Phi^T \Phi\right)^{-1} \Phi^T Y$$

"Normal Equation"

- □ There is an alternate derivation for the normal equation.
- This one provides much more intuition, but requires a deeper understanding of linear algebra.
- Understanding this is required for the course. Will vary widely in how much effort it takes to fully grok.

- Our observations Y form a single vector in an n-dimensional space.
- Maybe it's the observed weight of all n people in Berkeley: [120, 190, 210, 9.3, ...]



- $\blacktriangleright$  Our feature matrix  $\Phi$  has a column space.
  - Can think of this as the set of possible predictions for our N people given the data we have about each.
  - This subspace is ddimensional.
  - For example, columns could be calorie intake and minutes exercised per day.



- Picking a parameter vector θ̂ is tantamount to making a prediction for every person.
  - >  $\Phi \theta_{g1}$  is effectively a prediction for all N people using guess #1.
  - >  $\Phi \theta_{g2}$  is effectively a prediction for all N people using guess #2.



- Picking a parameter vector θ̂ is tantamount to making a prediction for every person.
  - >  $\Phi \theta_{g1}$  is effectively a prediction for all N people using guess #1.
  - >  $\Phi \theta_{g2}$  is effectively a prediction for all N people using guess #1.
  - > Which guess is better?
  - Where is the optimal solution?



- The best guess  $\hat{\theta}$ minimizes the length of e, where  $e = Y - \Phi \hat{\theta}$ .
  - $\succ$  e is called the residual.
- > This length is minimized if  $\Phi \hat{\theta}$  is the projection of *Y* onto the subspace!
  - In other words, if the residual is orthogonal to the basis vectors of the subspace, then θ is optimal.

optimal. More on this in discussion!



- In other words, if the residual is orthogonal to the basis vectors of the subspace, then θ̂ is optimal. So we need:
  - $\begin{array}{l} \succ \quad 0 = (Y \Phi \hat{\theta}) \cdot \Phi_{\bullet,1} \\ \Rightarrow \quad 0 = (Y \Phi \hat{\theta}) \cdot \Phi_{\bullet,2} \\ \Rightarrow \quad \dots \\ \Rightarrow \quad 0 = (Y \Phi \hat{\theta}) \cdot \Phi_{\bullet,d} \end{array}$

Or more simply:  $0 = \Phi^T (Y - \Phi \hat{\theta})$ 





## The Normal Equation $\hat{\theta} = (\Phi^T \Phi)^{-1} \Phi^T Y$

Optimizing Linear models is therefore very easy:  $\square$  Given  $\Phi$  and Y, compute  $(\Phi^T \Phi)^{-1} \Phi^T Y$  and you're done.

**Note:** For  $(\Phi^T \Phi)^{-1}$  to exist  $\Phi$  needs to be full column rank.

- No collinear columns.
- Why? Prove yourself, or see <a href="https://www.youtube.com/watch?v=ESSMQH6Y5OA">https://www.youtube.com/watch?v=ESSMQH6Y5OA</a>.
- Don't have full rank? Add regularization (see D100).