Regression and
Linear Models

First — a review of known material

Slides: Data 100, Joey Gonzalez



The Regression Line (Data 8)
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In Data 8, you talked about
generating the regression line.

N
N
o

200

[
o]
o

Given scalar data y and x, find
m and b that minimizes the
mean squared error (a.k.a. L2
Loss).
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Regression

[0 Estimating relationship between X and Y.
0 Yisaquantitative value.
0 X can be almost anything ...

X




Least Squares Linear Regression

One of the most widely used tools in machine learning and data science

Linear Model Linear in the Parameters
Y E , ‘93 ¢J

Feature Functions

Loss Minimization
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We will return to
solving this soon!

Squared Loss



Linear Models and Feature Functions

Linear in the Parameters

J = fo(x) = ZQjcbj(fE)

Feature Functions

For Example:

$1() =
P2() =

Adding a “constant” feature
function
p2(z) =1

IS a common method to
infroduce an offset (also
sometimes called bias) ferm.




Linear Models and Feature Functions

Linear in the Parameters

fo(x) = ZQjcbj(fE)

Feature Functions
Domain: x € {False, True}*x R

For Example: .. y. = 07 + 031(x; is 'Male’) + 031(x; is'Smoker’) + 6} size(x;)
Features:

$1(x) = I(x is 'Male")

¢, (x) = 1(x is 'Smoker’)

¢P3(x) = size(x) are a common method to
transform qualitative data
info quantitative data.

J

Indicator functions
¢1(x) = 1(x is 'Male")



Linear Models and Feature Functions

Linear in the Parameters

d
j=fo(z) =) 0;¢;(x)
J=1
Feature Functions
Question: Can a linear model do a 10

good job of fitfting y and x (to the right)?

A. Yes S
B. NO
C. Not sure ™




Linear Models and Feature Functions

Linear in the Parameters

J = fo(x) = Z@ij(fﬂ)

Feature Functions

Yes: reR  folx) =012+ Oy sin(x) + O3 sin(dx)
Fealures ] This is a linear model!
¢1 (x ) — & Linear in the parameters
¢2(x) = sin(x) >




Linear Models and Feature Functions

Linear in the Parameters

d
R Coby otue Funciions
j=1

Y
For Example: 7 € R?

f@(x) — (915131332 -+ 92 COS(ZEQ.CEl) -+ (93]1 [5131 > CUQ}

Features:
b\‘ " This is a linear modell
¢1 (CC) — bit2 20 | } Linear in the parameters
¢2(x) = cos(xamxy) o | -
¢3(x) =1[zy > x| LP /25_24

-20




Linear Models and Feature Functions

Linear in the Parameters

fo(x) = Z%’ij(fl?)

Feature Functions

Designing feature functions is a big part of machine learning
and data science.

J

Feature Functions
0 capture domain knowledge
0 conftribute o expressivity (and complexity)



Loss Minimization for
Linear Models



Linear Models iIn Matrix Notation

d
We discussed how our model o -
fakes an observation and V= folx) = z 0;¢p;(x)
produces a prediction. j=1

We can also express this in mafrix notation:
« ¢(x)is a vector of d features. = fa(x) =p(x)T0
* @ is avector of d parameters.

y p()"
1 1 d
1 d



Linear Models iIn Matrix Notation

d
Often we'll make predictions over o _ e
entire datasets: For each x;, we'll Vi = fo(x) = Z 5 (x0)
oredict y; using our model. J=1

We can also express this in mafrix notation:
* ¢(X)is an n x d matrix of features. Y = f(x) = p(X)0
* @ is avector of d parameters.

P

« Y is a vector of n predictions. Y H(X)
Our prediction for record #iis a linear — n d
combination of all d features of record #i.
] d

For notational convenience, we'll often
replace ¢(X) by the “feature matrix” &.



The Feature Matrix P

X DataFrame (n x c) P c RnXd
hasB ht i
vid |age |stale |hasBought [review AL NV TWYage | nossovgn o
0 32 NY True "Meh." missing
0 ] 0 32 1 0
42 50 WA True "Worked out of —
the box ..." 0 0 .. 0 .. 0 50 ] 0
57 16 CA NULL “Hella tofs lit..." 0 0 0 16 0 ]

Entfirely Quantitative Values



e —
The Feature Matrix CI) ST T )

o .. 0 .. O 16 0 1

Entirely Quantitative Values

I
: _¢ (Xl,.) E— Rows of the @ matrix
xd _ _ correspond to records
b c R" = ¢ [X] — — (XQ,o) (observations).
“r
DataFrame

Columns of the ® matrix
—0 (Xm.)_ correspond to features.

Notation Guide l ,

Ai ° :row i of matrix A.
b}

A.’j : column | of matrix A.




Making Predictions

N
qb (Xl’.) Rows of the ® matrix
= RnXd . ¢ [X] _ — (X2 .)_ correspond to records.
DataFrame S Columns of the & mafrix
_¢ (Xn .)_ correspond to features.
d
Prediction
N f—o (X, V1
Y:fé(X) — Ph = — 0 (X2) é — Y2
— 0 (X0} — ‘ D



Summary of Notation

Feature Linear
Engineering Regression



Loss Functions

0 Loss function: a function that characterizes the cost, error, or
loss resulting from a particular choice of model or model

parameters.

[l Many definitions of loss functions and the choice of loss
function affects the accuracy and computational cost of
estimation.

0 The choice of loss function depends on the estimation task
0 quantitative (e.g., tip) or qualitative variable (e.g., political affiliation)
0 Do we care about the outlierse
0 Are all errors equally costly? (e.g., false negative on cancer test)



1200

Squared Loss

Widely used loss! 800
The “error” in

o 2 600
The predicted value our prediction [
400
2 200
L (97 y) T (y o 0) —— Squared Loss

—  Observation

0 10 20 30 40 o0

0
An observed data point
Choice for 6

Also known as the the L? loss (pronounced “el two")

1 Reasonablee¢
[l 6=y [Jgood prediction [J good fit [ no loss!
[ 6 farfromy [Jbad prediction [J bad fit [Jlofs of loss!



—  Abs Loss

AbSOlUTe I_OSS 30 —— Observation

It sounds worse than it is ...
20

Loss

L(0,y)=ly—0

Absolute value |

0 10 20 30 40 50
Choice for 8

Also known as the the L' loss (pronounced “el one”)

Reasonablee
[l 6=y [Jgood prediction [] good fit [ no loss!
[l O farfromy (] bad prediction [Jbad fit [ some loss



Can you think of another
Loss Functione



y— 0] < a

%) otherwise

HUber LOSS 150 —— Huber Loss

—  (bservation
0 Parameter « that we need to 125
choose. 100
§ 75
0 Reasonable? o
[l © =y [lgood prediction 55

[1 good fit [1 no loss!

[] O farfromy [Jbad prediction
[ bad fit [7some loss -25

0 A hybrid of the L2 and L1 losses...

0 10 20 30 40 50
Choice for 8



The Loss Function in Matrix Notation

2
n d

1 Ly Ty

L(0) = = - ==Y -Y)'(Y-Y
(0) nz(% ZW(I@)) (Y =Y)T(Y -Y)
1=1 J=1 S S S [ vi—n

1 Iglg |: y2_§2

=— (Y - 0)" (Y — ®0) | -
n yn_:&n

_ (Y'Y —2Y" @6 + 6" &' $6)

T



The Loss Function in Matrix Notation

] ] ] ]
| ] | ]
L(9) = 1 (Y'Y —2Y"®0 + 0" &' ®0)

n ,

To minimize, we need to compute the gradient and set it equal to zero.



Minimizing the Loss

L(9) = 1 (Y'Y —2Y" %0 + 6" &' 30)
n

dL(6) JL(6) dL(6)

, = (0,0, ...,0
00, ' 06, 90, | |

Vg L(Q) — [

Could expand out L(8) and do calculus + algebra, but this would be
incredibly tedious! (might be worth doing to test your understanding).

1
L(B) = E(()ﬁz +y5 + o yg) — 2(()’14’11 + Y221+ Yndn1)b1 +- ) +- )

Instead, let’s do everything natively in matrix notation.



LOss minimization

0 Review these slides on your own (you can watch former
D100 lectures it useful).



Some Useful Matrix Calculus Rules

Let’s discuss a couple of rules, that are useful to us.

First: Vg(48) = AT, where A and 8 are 1 x d and d x 1, respectively.
Transpose because we want
0(A6) 9(A0) 0(A6) T— gradient to be a column vector!

Vo(40) =
o(A0) 36, ' 26, ' 96,

_6(a191 + a292 + -+ ade) 0(a191 + Cl292 + oo+ adﬁd) r
90, 96,




Some Useful Matrix Calculus Rules

Second: Vy(8746) = A8 + AT0, where Aand 8 are dxd and d x 1.

Proof is not hard, but a bit tedious. Not shown here. Similar to first proof.

Useful Matrix Derivative Rules:

11 Vg (AF) = A"




Optimizing the Loss Algebraically

Deriving the Normal Equation

1

L(O) == (Y'Y —2Y" @0 + 6" & 90)

n

Taking the Gradient of the loss

2

VoL(0) = —;chY + E<1>T<1>¢9

Rule/l Rule/2 Useful Matrix Derivative Rules:

9 11 Vg (AF) = A"
2) Vo (QTAQ) — A0+ AT 0

Setting the gradient equal to O and solving for ©:

2

0=—="0'Yy +=

n

2

n

OTP) == = (0T®)  OTY

“Normal Equation”



Optimizing the Loss Geometrically

1 This one provides much more infu
deeper understanding of linear @

1 There is an alternate derivation for the normal equation.

Iflon, but requires a
gebra.

0 Understanding this is required for |

‘he course. Will vary

widely in how much effort it tfakes to fully grok.



Optimizing the Loss Geometrically

0 Qur observations Y
form a single ndimensionalgpace v
vector in an
N-dimensionaAl
space.

0 Maybe it's the
observed weight

of all n people Iin
Berkeley: [120, 190, -

210,93, ...]




Optimizing the Loss Geometrically

¥ Our feature matrix @
has a column space. n dimensional space

> Can think of this as Y,
the set of possible
predictions for our N
people given the
data we have about
each.

» This subspace is d-
dimensional.

» For example,
columns could be
calorie intake and
minutes exercised
per day.




Optimizing the Loss Geometrically

B Picking a parameter
vector é IS tfantamount n dimensionolAspoce Y
to making a prediction
for every person. /
» @b, is effectively o

prediction for all N
people using guess #1.
» @b, is effectively o

prediction for all N
people using guess #2.




Optimizing the Loss Geometrically

B Picking a parameter
vector 8 is tfantamount n dimensional space

to making a prediction }

for every person.

» @6, is effectively o
prediction for all N
people using guess #1.

» @b, is effectively o

prediction for all N
people using guess #1.

> Which guess is better?

> Where is the optimal
solution?




Optimizing the Loss Geometrically

B The best guess 8
minimizes the Ieng’rAh of n dimensional space
e, wheree =Y — ®6.

> e is called the residual. ‘ y _ cp@

> This length is minimized \)\O%Q
if @0 is the projection of O

Y onto the subspacel! < Da q)ggl

> |In other words, if the &

residual is orthogonal to

the basis vectors of the -

subspace, then 8 is
optimal. O\\&

More on this in discussion! \/




Optimizing the Loss Geometrically

B In other words, if the

residual is orthogonal to n dimensional space
the basis vectors of the
subspace, then 8 is ‘ v <I>9
optimal. So we need: K
> 0= (Y —@0)- Do, 5

~ N\
> 0=(Y —®0) - @ O

( ) ®2 (\%\O ¢. , (I)H
> ... ,((\6 ’ gl
& &

> Oz(y—q)é)cb.,d O

Or more simply:
0=o7(Y — 9b)




N d|men5|onoIAspoce Y

\/

Definition of orthogonality

0=dT(Y — ¢0)

T

dxn Nn x 1 residual

Columns space of ®

n 6, n ?21
0 n
: Y2 .
(I)o,la q)o,Q ,,,,, (po,d : — — Y
0. )

Derivation

O:@T(Y—CM)

0=dTYy — dTdd
dTdh = 7Y
)= (27®)  @TY

“Normal Equation”



The Normal Equation 6 = (<I>T<I>)_1 oYy

Optimizing Linear models is therefore very easy:
B Given ® and Y, compute (@Td) " 1dTY and you're done.

Note: For (&7 ®)~1 to exist ® needs to be full column rank.

0 No collinear columns.

0 Why<¢ Prove yourself, or see
https://www.youtube.com/watch2v=ESSMQH4Y50A.

0 Don't have full rank? Add regularization (see D100).



https://www.youtube.com/watch?v=ESSMQH6Y5OA

