
DS 102 Data, Inference, and Decisions Fall 2019

Lecture 7: Probability Interpretation of Logistic Models
Lecturer: Fernando Perez

In the last lecture, we looked at links between probability theory and regression. In this lecture,
we are going to look at a probabilistic interpretation of classification, and specifically binary clas-
sification. We begin by recapping the setup of logistic regression, and then give a probabilistic
interpretation of the cross-entropy loss as well as a probabilistic justification for using a logistic
function as the model for regression problems on categorical data.

1 Binary Classification with Logistic Regression

The setup for binary classification is similar to that of linear regression, with the key difference that
the quantity we are trying to predict is categorical rather than quantitative. In the previous lecture
on linear regression, we assumed that we had collected data x1, ..., xn from which we could extract
features φ(x1), ..., φ(xn). We then used these features to make a quantitative prediction Y using
a linear combination of the features. In the classification task that we now seek to address, the
prediction Y is no longer a number in R, but is a categorical quantity like e.g. whether (Y = 1) or
not (Y = 0) a picture is of a dog, whether (Y = 1) or not (Y = 0) it is going to rain today, etc. The
setup for binary classification is illustrated in Figure 7.1 below.

Figure 7.1: Binary classification

In Data 100, you should have seen that a common approach to binary classification is to use a
logistic function as the model around a linear function of the features. This is a common sense
choice because the data in classification problems is clearly not linear (as shown in Figure 7.2).
Generally, the shape of the logistic function more closely matches the desired shape of the data in
classification tasks.
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Figure 7.2: Linear Regression vs. Logistic Regression. Note that the linear model does not have the
correct shape for the data.

Thus, the parametric model fθ(x) for our data in a logistic regression problem is usually in the form
given by:

fθ(x) = σ(φ(x)T θ) =
1

1 + e−φ(x)T θ
,

where once again, we have allowed the features φ(x) to be d-dimensional, and the parameter vector
θ is also d-dimensional.

Remark 7.1. Note that the logistic function is not a linear function in θ.

Given this model, we could proceed as we did in linear regression and find the best parameters θ∗

by minimizing the mean squared loss over the data (x1, y1), ..., (xn, yn):

argmin
θ

1

n

n∑
i=1

(yi − fθ(xi))2

However, since the logistic function is non-linear and actually non-convex, the resulting optimiza-
tion problem is non-convex (meaning that it may have multiple local minima). This is illustrated in
Figure 7.3, where we can see there is a minimum at around 0.5, but also seemingly towards −∞.
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Figure 7.3: Squared loss with a logistic model

To solve this problem we often work with the cross-entropy loss, given by:

L(θ) = − 1

n

n∑
i=1

(yiφ(xi)
T θ + log(1− fθ(xi)))

With this loss, which can be seen as minimizing a KL-divergence (as we will show), the problem is
now convex as can be seen by Figure 7.4.

Figure 7.4: Squared loss vs Cross-entropy loss on categorical data with logistic models.

Remark 7.2. If the data is perfectly linearly separable, the optimal weights under the cross-entropy
loss may be infinite. To solve this problem, we often solve a regularized version of the problem given
by:

L(θ) = − 1

n

n∑
i=1

(yiφ(x
T
i θ + log(fθ(xi))) + λ||θ||22.

where λ ≥ 0 is the regularization parameter.

In the following section, we give a probabilistic interpretation of the cross-entropy loss as well as
a probabilistic justification for using a logistic function as the model for regression problems on
categorical data.
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2 Probabilistic Interpretation of Logistic Models

To provide a probabilistic interpretation of the logistic model as well as that of the cross-entropy
loss, we model our data y1, ..., yn as being independent, and sampled from their own Bernouilli
distributions. That is, yi ∼ Bernouilli(pi), for i = 1, ..., n, where pi is unknown. We would like to
find a maximum likelihood estimate of pi for each yi.

Since yi ∈ {0, 1}, the likelihood of yi is either pi if yi = 1 or 1 − pi if yi = 0 We can write this
compactly as:

L(yi; pi) = pyii (1− pi)
1−yi

The likelihood of all of the data is therefore given by:

L(y|p) =
n∏
i=1

pyii (1− pi)
1−yi ,

where y is the n×1 vector of all yi’s and p is the n×1 vector of all pi’s for i = 1, ..., n. As we usually
do, it is often most convenient to work with the log-likelihood of the data, `, which simplifies to:

`(y|p) =
n∑
i=1

(yi log(pi) + (1− yi) log(1− pi)),

Rearranging, we can write the log-likelihood of the data as:

`(y|p) =
n∑
i=1

(yi log
pi

1− pi
+ log(1− pi)),

Given the log-likelihood in this form, we can see that the first term is the logarithm of the “odds”
ratio which is given by:

“odds” ratio =
pi

1− pi

If we plot the “odds” ratio, as can be seen in Figure 7.5a, we can see that this is not a symmetric
function of pi around 0.5. However, if we analyze the log-odds ratio, as seen in Figure 7.5b, we can
see that it is symmetric around pi = 0.5. As such this seems like the correct function to model for a
problem of learning the value of pi for different data.
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(a) (b)

Figure 7.5: Odds ratio vs. Log-odds ratio

We remark that on the interval 0.1− 0.9, the log-odds ratio is roughly linear, so we decide to model
the log-odds ratio as a linear function of our data x1, ..., xn. Solving for the value of pi if we model
the log-odds as a function of xi recovers the logistic function we analyzed before.

log
pi

1− pi
= φ(xi)

T θ

pi
1− pi

= eφ(xi)
T θ

pi =
eφ(xi)

T θ

1 + eφ(xi)T θ

pi =
1

1 + e−φ(xi)T θ

Substituting this into the expression for the log-likelihood gives:

`(y|p) =
n∑
i=1

(yiφ(xi)
T θ + σ(−φ(xi)T θ),

If we were to find the maximum likelihood value of θ, this is exactly equivalent to minimizing
the cross-entropy loss of our model on the data. Therefore, we can see that logistic regression is
essentially just maximum likelihood estimation where the log-odds is view as a linear function of
the data.

2.1 Logistic function as the posterior probability of data coming from one of two
gaussians

Another way of deriving the logistic function is by computing the posterior probability of data
coming from one of two Gaussian distributions. Suppose you receive a sample x which, with
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probability 1− p came from Gaussian Y = 0 with mean µ0 and variance σ2 and with probability p
came from a Gaussian Y = 1 with mean µ1 and variance σ2. you compute the posterior probability
that the sample came from Gaussian 1. Remember that a Gaussian distribution has density given
by:

P (x) =
1√
2πσ2

e−
(x−µ)2

2σ2

To compute the posterior probability we can use Bayes’ rule and then simplify:

P (Y = 1|x) = P (x|Y = 1)P (Y = 1)

P (x|Y = 1)P (Y = 1) + P (x|Y = 0)P (Y = 0)

=
πe−

(x−µ1)
2

2σ2

πe−
(x−µ1)2

2σ2 + (1− π)e−
(x−µ0)2

2σ2

Multiplying the top and bottom by e
(x−µ0)

2

2σ2 and rearraging gives:

P (Y = 1|x) = πe−
(x−µ1)

2

2σ2
+

(x−µ0)
2

2σ2

1− π + πe−
(x−µ1)2

2σ2
+

(x−µ0)2
2σ2

=
e−

(x−µ1)
2

2σ2
+

(x−µ0)
2

2σ2
+log π

1−π

1 + e−
(x−µ1)2

2σ2
+

(x−µ0)2
2σ2

+log π
1−π

=
1

1 + e
(x−µ1)2

2σ2
− (x−µ0)2

2σ2
−log π

1−π

=
1

1 + e
(µ0−µ1)x

σ2
−

(µ21−µ
2
0)

σ2
−log π

1−π

=
1

1 + e−βx−γ

Where β = (µ1−µ0)
σ2 and γ =

(µ20−µ21)
2σ2 + log π

1−π
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