Lecture 11: Frequentist Regression and Bootstrap

Jacob Steinhardt

October 1, 2020

- Bayesian regression
 - Least squares = MLE
 - Ridge regression = MAP
- Overdispersion
 - Model mis-specification \implies overly narrow uncertainty

- Bayesian regression
 - Least squares = MLE
 - Ridge regression = MAP
- Overdispersion
 - Model mis-specification → overly narrow uncertainty

This time: frequentist uncertainty and bootstrap

Bayesian vs. frequentist uncertainty

Credible interval:

Confidence interval:

Credible interval: Posterior probability that θ lies in interval is at least *p*

Confidence interval: Conditional on θ , interval contains θ with probability p

Recall COVID-19 example: $\mathbb{E}[\text{Cases} \mid \text{Day}] = \exp(\beta_{\text{Day}} \cdot \text{Day} + \beta_{\text{Intercept}})]$

To understand growth rate, care about coefficient β_{Day}

Recall COVID-19 example: $\mathbb{E}[\text{Cases} \mid \text{Day}] = \exp(\beta_{\text{Day}} \cdot \text{Day} + \beta_{\text{Intercept}})]$

To understand growth rate, care about coefficient β_{Day}

Previous lecture: MCMC sampling gives us posterior distribution (and hence credible interval) for β_{Day} :

Recall COVID-19 example: $\mathbb{E}[\text{Cases} \mid \text{Day}] = \exp(\beta_{\text{Day}} \cdot \text{Day} + \beta_{\text{Intercept}})]$

To understand growth rate, care about coefficient β_{Day}

What about confidence interval? Can't use prior.

Recall COVID-19 example: $\mathbb{E}[\text{Cases} \mid \text{Day}] = \exp(\beta_{\text{Day}} \cdot \text{Day} + \beta_{\text{Intercept}})]$

To understand growth rate, care about coefficient β_{Day}

What about confidence interval? Can't use prior.

General recipe: use generalization of CLT called "asymptotic normality"

Recall COVID-19 example: $\mathbb{E}[\text{Cases} \mid \text{Day}] = \exp(\beta_{\text{Day}} \cdot \text{Day} + \beta_{\text{Intercept}})]$

To understand growth rate, care about coefficient β_{Day}

What about confidence interval? Can't use prior.

General recipe: use generalization of CLT called "asymptotic normality"

Beyond scope of this class, but statsmodels package will do it for us!

Confidence intervals with statsmodels

[Jupyter demo]

Frequentist confidence intervals can be wrong if model is wrong

Just like Bayesian case

We'll escape this with a non-parametric tool for producing frequentist CIs

Non-parametric \implies doesn't rely on model \implies more robust

Frequentist confidence intervals can be wrong if model is wrong

Just like Bayesian case

We'll escape this with a non-parametric tool for producing frequentist CIs

Non-parametric \implies doesn't rely on model \implies more robust

You've seen this before: the bootstrap

The Bootstrap

Idea for computing confidence intervals + uncertainty

Without bootstrap:

- Chi-square test, student-t test, ...
- Lots of algebra, need different formula for each setting
- Often rely on model assumptions

With bootstrap:

- Single unified approach
- Computer simulation
- Fewer assumptions

Data: $x^{(1)}, ..., x^{(n)}$

Estimator:
$$\hat{ heta} = \hat{ heta}(x^{(1)}, \dots, x^{(n)})$$

• $heta^*$: population parameter (what $\hat{ heta}$ converges to as $n \to \infty$)

Question: How close is θ^* to $\hat{\theta}$?

Mean of 1-dimensional distribution:

•
$$x^{(1)},\ldots,x^{(n)}\in\mathbb{R}$$

•
$$\hat{\theta}(x^{(1)},...,x^{(n)}) = \frac{1}{n}(x_1+...+x_n)$$

How close is estimate to the true mean?

Mean of 1-dimensional distribution:

•
$$x^{(1)}, \dots, x^{(n)} \in \mathbb{R}$$

• $\hat{\theta}(x^{(1)}, \dots, x^{(n)}) = \frac{1}{n}(x_1 + \dots + x_n)$

How close is estimate to the true mean?

Regression:

•
$$(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)}) \in \mathbb{R}^d \times \mathbb{R}$$

• $\hat{\beta}((x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})) = \operatorname{argmin}_{\beta} \sum_{i=1}^n (y^{(i)} - \beta^\top x^{(i)})^2$

How close is $\hat{\beta}$ to population parameters β^* ?

Mixture models

Density estimation

Neural nets? (Actually not...)

Population distribution p^*

•
$$x^{(1)}, \ldots, x^{(n)} \sim p^*$$

Population distribution p^*

•
$$x^{(1)}, ..., x^{(n)} \sim p^*$$

Noise in $\hat{\theta}$ due to randomness in $x^{(1)}, \ldots, x^{(n)}$

Population distribution p^*

• $x^{(1)}, ..., x^{(n)} \sim p^*$

Noise in $\hat{\theta}$ due to randomness in $x^{(1)}, \ldots, x^{(n)}$

Imagine hypothetically sampling fresh data:

$$x^{(1)}, \dots, x^{(n)} \rightarrow \hat{ heta}$$
 (Original sample
 $x^{(1)'}, \dots, x^{(n)'} \rightarrow \hat{ heta}'$ (Re-sample)
 $x^{(1)''}, \dots, x^{(n)''} \rightarrow \hat{ heta}''$
 $x^{(1)'''}, \dots, x^{(n)'''} \rightarrow \hat{ heta}'''$

Population distribution p^*

• $x^{(1)}, ..., x^{(n)} \sim p^*$

Noise in $\hat{\theta}$ due to randomness in $x^{(1)}, \ldots, x^{(n)}$

Imagine hypothetically sampling fresh data:

$$x^{(1)}, \dots, x^{(n)}
ightarrow \hat{ heta}$$
 (Original sample)
 $x^{(1)'}, \dots, x^{(n)'}
ightarrow \hat{ heta}'$ (Re-sample)
 $x^{(1)''}, \dots, x^{(n)''}
ightarrow \hat{ heta}''$
 $x^{(1)'''}, \dots, x^{(n)'''}
ightarrow \hat{ heta}'''$

Implicit commitment: distribution of $\hat{\theta}$ roughly centered on θ^* (low bias)

$$\hat{\theta}(x_1,\ldots,x_n) = \max_{i=1}^n x_i$$

n samples: always finite

 ∞ samples: infinite

Want to approximate hypothetical samples $\hat{ heta}', \hat{ heta}'', \dots$

But only have actual data $x^{(1)}, \ldots, x^{(n)} o \hat{ heta}$

Idea: subsample data

- With replacement
- *n* points in each sample

B: number of bootstrap samples

For b = 1, ..., B: • Sample $x^{(1)'}, ..., x^{(n)'}$ with replacement from $x^{(1)}, ..., x^{(n)}$ • Let $\hat{\theta}^{(b)} = \hat{\theta}(x^{(1)'}, ..., x^{(n)'})$

Output $\{\hat{\theta}^{(1)}, \dots, \hat{\theta}^{(B)}\}$

[Jupyter demos]

When does the bootstrap work?

Most parametric estimators are fine

• I.e. fixed number of parameters d and $d \ll n$

When does the bootstrap work?

Most parametric estimators are fine

• I.e. fixed number of parameters d and $d \ll n$

NOT parametric:

- Decision trees
- Neural nets
- Kernel regression

These "interpolate" data, sampling with replacement pprox subsampling

When does the bootstrap work?

Most parametric estimators are fine

• I.e. fixed number of parameters *d* and *d* << *n*

NOT parametric:

- Decision trees
- Neural nets
- Kernel regression

These "interpolate" data, sampling with replacement pprox subsampling

Other commitments:

- $\hat{\theta}$ approximately unbiased
- θ^{*} is a meaningful quantity

- Credible intervals vs. confidence intervals
- Confidence intervals in statsmodels
- Still depend on assumptions!
- Bootstrap more robust (and flexible)