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Recap

Bayesian regression
Least squares = MLE
Ridge regression = MAP

Overdispersion
Model mis-specification =⇒ overly narrow uncertainty

This time: frequentist uncertainty and bootstrap
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Bayesian vs. frequentist uncertainty

Credible interval:

Posterior probability that θ lies in interval is at least p

Confidence interval:

Conditional on θ , interval contains θ with probability p
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Confidence/credible intervals for regression

Recall COVID-19 example: E[Cases | Day] = exp(βDay ·Day+βIntercept)]

To understand growth rate, care about coefficient βDay

J. Steinhardt Regression & Bootstrap October 1, 2020 4 / 17



Confidence/credible intervals for regression

Recall COVID-19 example: E[Cases | Day] = exp(βDay ·Day+βIntercept)]

To understand growth rate, care about coefficient βDay

Previous lecture: MCMC sampling gives us posterior distribution (and hence
credible interval) for βDay:
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Confidence/credible intervals for regression

Recall COVID-19 example: E[Cases | Day] = exp(βDay ·Day+βIntercept)]

To understand growth rate, care about coefficient βDay

What about confidence interval? Can’t use prior.

General recipe: use generalization of CLT called “asymptotic normality”

Beyond scope of this class, but statsmodels package will do it for us!
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Confidence intervals with statsmodels

[Jupyter demo]
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Escaping model mis-specification

Frequentist confidence intervals can be wrong if model is wrong

Just like Bayesian case

We’ll escape this with a non-parametric tool for producing frequentist CIs

Non-parametric =⇒ doesn’t rely on model =⇒ more robust

You’ve seen this before: the bootstrap
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The Bootstrap

Idea for computing confidence intervals + uncertainty

Without bootstrap:

Chi-square test, student-t test, . . .

Lots of algebra, need different formula for each setting

Often rely on model assumptions

With bootstrap:

Single unified approach

Computer simulation

Fewer assumptions
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Bootstrap: formal setting

Data: x(1), . . . ,x(n)

Estimator: θ̂ = θ̂(x(1), . . . ,x(n))

θ ∗: population parameter (what θ̂ converges to as n→ ∞)

Question: How close is θ ∗ to θ̂?
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Some concrete examples

Mean of 1-dimensional distribution:

x(1), . . . ,x(n) ∈ R
θ̂(x(1), . . . ,x(n)) = 1

n (x1 + . . .+ xn)

How close is estimate to the true mean?

Regression:

(x(1),y(1)), . . . ,(x(n),y(n)) ∈ Rd ×R
β̂ ((x(1),y(1)), . . . ,(x(n),y(n))) = argminβ ∑

n
i=1(y

(i)−β>x(i))2

How close is β̂ to population parameters β ∗?
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More complex examples

Mixture models

Density estimation

Neural nets? (Actually not...)
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The ideal hypothetical: re-sampling

Population distribution p∗

x(1), . . . ,x(n) ∼ p∗

Noise in θ̂ due to randomness in x(1), . . . ,x(n)

Imagine hypothetically sampling fresh data:

x(1), . . . ,x(n)→ θ̂ (Original sample)

x(1)′, . . . ,x(n)′→ θ̂
′ (Re-sample)

x(1)′′, . . . ,x(n)′′→ θ̂
′′

x(1)′′′, . . . ,x(n)′′′→ θ̂
′′′

...

Implicit commitment: distribution of θ̂ roughly centered on θ ∗ (low bias)
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Counterexample

θ̂(x1, . . . ,xn) = maxn
i=1 xi

n samples: always finite

∞ samples: infinite
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The Boostrap

Want to approximate hypothetical samples θ̂ ′, θ̂ ′′, . . .

But only have actual data x(1), . . . ,x(n)→ θ̂

Idea: subsample data

With replacement

n points in each sample

J. Steinhardt Regression & Bootstrap October 1, 2020 13 / 17



Bootstrap: Pseudocode

B: number of bootstrap samples

For b = 1, . . . ,B:

Sample x(1)′, . . . ,x(n)′ with replacement from x(1), . . . ,x(n)

Let θ̂ (b) = θ̂(x(1)′, . . . ,x(n)′)

Output {θ̂ (1), . . . , θ̂ (B)}
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Bootstrap in python

[Jupyter demos]
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When does the bootstrap work?

Most parametric estimators are fine

I.e. fixed number of parameters d and d � n

NOT parametric:

Decision trees

Neural nets

Kernel regression

These “interpolate” data, sampling with replacement ≈ subsampling

Other commitments:

θ̂ approximately unbiased

θ ∗ is a meaningful quantity
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Summary

Credible intervals vs. confidence intervals

Confidence intervals in statsmodels

Still depend on assumptions!

Bootstrap more robust (and flexible)
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