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Complex Decision-Making

Previous lectures have explored several themes:

Decision-making

Time dynamics and statefulness (e.g. Markov models)

Value of information (e.g. multi-armed bandits)

Will combine all of these with Markov decision processes (stateful
decision-making) and reinforcement learning (stateful decision-making with
uncertainty).
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Roadmap

Review: dynamic programming
Markov decision processes

Bellman equations
Solution via dynamic programming

Reinforcement learning (next lecture)
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Dynamic programming warm-up: Fibonacci

Fibonacci sequence: Fn = Fn−1 +Fn−2 (F0 = 0, F1 = 1)

Recursive function:

def fib(n):
if n <= 1:
return n

else:
return fib(n-1) + fib(n-2)

What happens if we call fib(50)?
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Exponential blow-up
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Solution 1: Memoization

Remember answers in a dict:

memo_dict = dict()
def fib(n):
if n in memo_dict.keys():
return memo_dict[n]

elif n <= 1:
ans = n

else:
ans = fib(n-1) + fib(n-2)

memo_dict[n] = ans
return ans

Can use decorators for slick code

Slow (dict lookup each time)
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Solution 2: Dynamic Programming

Can replace with for loop if we do things in right oder:

import numpy as np
n_max = 50
fibs = np.array(n_max)
fibs[0], fibs[1] = 0, 1
for n in range(2, n_max):

fibs[n] = fibs[n-1] + fibs[n-2]

Pro: fast, low-memory

Con: more thinking; need to find linear structure
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Harder example: car and gas stations

Locations 0, . . . ,n

Car starts at location 0, wants to get to location n

Each location i : gas station selling gi units of gas at ci dollars per unit

1 unit of gas to move 1 unit right

Challenge:
How much gas should we buy at each location to minimize total cost?
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Solution via recursion

State: (location, gas left in tank)

Define f (loc,gas) = minimum cost to get to end given current state
(“cost-to-go”)

Two options: buy 1 unit of gas (stay where we are), or go forward
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State: (location, gas left in tank)

Define f (loc,gas) = minimum cost to get to end given current state
(“cost-to-go”)

Two options: buy 1 unit of gas (stay where we are), or go forward

def f(loc, gas):
if loc == n:

return 0
if gas < 0:
return -np.inf

cost1 = f(loc, gas+1) + price[loc]
cost2 = f(loc+1, gas - 1)
return min(cost1, cost2)
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Solution via dynamic programming

f = np.zeros(shape=(n+1,n+1))
for loc in range(n-1, -1, -1):
for gas in range(n, -1, -1):

cost1 = f[loc, gas+1] + price[loc]
cost2 = f[loc+1, gas-1]
f[loc, gas] = min(cost1, cost2)

Gas station problem is special case of Markov decision process

Will define these next and see how to formulate a general dynamic
programming solution
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Solving the recursion

Recursion for V ∗ is circular:

V ∗(s) = max
a ∑

s′
T (s,a,s′)[R(s,a,s′)+ γV ∗(s′)]

Not a problem for gas stations because states were totally ordered

Can’t assume this in general

Solution: add a time component

V ∗(s, t) = max
a ∑

s′
T (s,a,s′)[R(s,a,s′)+ γV ∗(s′, t−1)],

V ∗(s,0) = 0

Time t creates total ordering!

Can recover V ∗(s) by taking t → ∞
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Value learning via dynamic programming

Can save memory with “sliding window” trick:

V = np.zeros(shape=(num_states, t_max))
for t in range(1, t_max):

for s in range(num_states):
V[s, t] = max([sum([T(s, a, s2) * (R(s, a, s2)

+ gamma * V[s2, t-1])
for s2 in num_states])

for a in num_actions])
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Value learning via dynamic programming

Can save memory with “sliding window” trick:

V = np.zeros(num_states)
for t in range(1, t_max):
V_old = np.copy(V)
for s in range(num_states):
V[s] = max([sum([T(s, a, s2) * (R(s, a, s2)

+ gamma * V_old[s2])
for s2 in num_states])

for a in num_actions])
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Exploiting monotonicity

Since updates monotonically approach V ∗, can update in place:

V = np.zeros(num_states)
for t in range(1, t_max):

for s in range(num_states):
V[s] = max([sum([T(s, a, s2) * (R(s, a, s2)

+ gamma * V[s2])
for s2 in num_states])

for a in num_actions])
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Recap

Defined Markov decision process:
states, actions, (stochastic) transitions, rewards

Recursion (Bellman equations)

Efficient solution via dynamic programming

Even more efficient solution exploiting monotonicity (in-place updates)

Next lecture: what if transitions need to be learned? (RL)
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