Lecture 22: Markov Decision Processes

Jacob Steinhardt

November 10, 2020

Complex Decision-Making

Previous lectures have explored several themes:

- Decision-making
- Time dynamics and statefulness (e.g. Markov models)
- Value of information (e.g. multi-armed bandits)

Will combine all of these with Markov decision processes (stateful decision-making) and reinforcement learning (stateful decision-making with uncertainty).

Roadmap

- Review: dynamic programming
- Markov decision processes
- Bellman equations
- Solution via dynamic programming
- Reinforcement learning (next lecture)

Dynamic programming warm-up: Fibonacci

Fibonacci sequence: $F_{n}=F_{n-1}+F_{n-2}\left(F_{0}=0, F_{1}=1\right)$

Recursive function:
def fib(n):
if $\mathrm{n}<=1$:
return n
else:
return fib(n-1) + fib(n-2)

What happens if we call fib (50)?

Exponential blow-up

Solution 1: Memoization

Remember answers in a dict:

```
memo_dict = dict()
```

def fib(n):
if n in memo_dict.keys():
return memo_dict[n]
elif n <= 1 :
ans = n
else:
ans $=f i b(n-1)+f i b(n-2)$
memo_dict[n] = ans
return ans

Solution 1: Memoization

Remember answers in a dict:

```
memo_dict = dict()
def fib(n):
    if n in memo_dict.keys():
    return memo_dict[n]
elif n <= 1:
    ans = n
else:
    ans = fib(n-1) + fib(n-2)
memo_dict[n] = ans
return ans
```

- Can use decorators for slick code
- Slow (dict lookup each time)

Solution 2: Dynamic Programming

Can replace with for loop if we do things in right oder:
import numpy as np
n_max = 50
fibs = np.array(n_max)
fibs[0], fibs[1] = 0, 1
for n in range (2, n_max):
fibs[n] = fibs[n-1] + fibs[n-2]

Solution 2: Dynamic Programming

Can replace with for loop if we do things in right oder: import numpy as np
n_max = 50
fibs = np.array(n_max)
fibs[0], fibs[1] = 0, 1
for n in range (2, n_max):
fibs[n] = fibs[n-1] + fibs[n-2]

- Pro: fast, low-memory
- Con: more thinking; need to find linear structure

Harder example: car and gas stations

- Locations $0, \ldots, n$
- Car starts at location 0 , wants to get to location n
- Each location i : gas station selling g_{i} units of gas at c_{i} dollars per unit
- 1 unit of gas to move 1 unit right

Challenge:

How much gas should we buy at each location to minimize total cost?

Solution via recursion

- State: (location, gas left in tank)
- Define $f($ loc, gas $)=$ minimum cost to get to end given current state ("cost-to-go")
- Two options: buy 1 unit of gas (stay where we are), or go forward

Solution via recursion

- State: (location, gas left in tank)
- Define $f(\mathrm{loc}$, gas $)=$ minimum cost to get to end given current state ("cost-to-go")
- Two options: buy 1 unit of gas (stay where we are), or go forward

```
def f(loc, gas):
    if loc == n:
    return 0
    if gas < 0:
        return -np.inf
    cost1 = f(loc, gas+1) + price[loc]
    cost2 = f(loc+1, gas - 1)
    return min(cost1, cost2)
```


Solution via dynamic programming

```
f = np.zeros(shape=(n+1,n+1))
for loc in range(n-1, -1, -1):
    for gas in range(n, -1, -1):
    cost1 = f[loc, gas+1] + price[loc]
    cost2 = f[loc+1, gas-1]
    f[loc, gas] = min(cost1, cost2)
```


Solution via dynamic programming

```
f = np.zeros(shape=(n+1,n+1))
for loc in range(n-1, -1, -1):
    for gas in range(n, -1, -1):
    cost1 = f[loc, gas+1] + price[loc]
    cost2 = f[loc+1, gas-1]
    f[loc, gas] = min(cost1, cost2)
```

- Gas station problem is special case of Markov decision process
- Will define these next and see how to formulate a general dynamic programming solution

DS 102: Data, Inference, and Decisions

Lecture 23: Markov Decision Processes

Jacob Steinhardt
University of California, Berkeley
Slides thanks and credit:
Fernando Perez, Anca Dragan, Dan Klein, Pieter Abbeel, and the Berkeley CS188 team: ai.berkeley.edu.

Markov Decision Processes

- An MDP is defined by:
- A set of states $s \in S$
- A set of actions $a \in A$
- A transition function $T\left(s, a, s^{\prime}\right)$
- Probability that a from s leads to s', i.e., P(s'|s, a) 2
- Also called the model or the dynamics
- A reward function $\mathrm{R}\left(\mathrm{s}, \mathrm{a}, \mathrm{s}^{\prime}\right)$
- Sometimes just R(s) or R(s')
- A start state
- Maybe a terminal state

Example: Grid World

- A maze-like problem
- The agent lives in a grid
- Walls block the agent's path
- Noisy movement: actions do not always go as planned
- 80% of the time, the action North takes the agent North (if there is no wall there)
- 10% of the time, North takes the agent West; 10% East
- If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step

- Small "living" reward each step (can be negative)
- Big rewards come at the end (good or bad)
- Goal: maximize sum of rewards

Grid World Actions

Deterministic Grid World

Stochastic Grid World

What is Markov about MDPs?

- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means action outcomes depend only on the current state

$$
\begin{aligned}
& P\left(S_{t+1}=s^{\prime} \mid S_{t}=s_{t}, A_{t}=a_{t}, S_{t-1}=s_{t-1}, A_{t-1}, \ldots S_{0}=s_{0}\right) \\
& \quad= \\
& P\left(S_{t+1}=s^{\prime} \mid S_{t}=s_{t}, A_{t}=a_{t}\right)
\end{aligned}
$$

Andrey Markov (1856-1922)

- This is just like search, where the successor function could only depend on the current state (not the history)

Policies

- In deterministic single-agent search problems, we want an optimal plan, or sequence of actions, from start to a goal
- For MDPs, we want an optimal policy $\pi^{*}: S \rightarrow A$
- A policy π gives an action for each state
- An optimal policy is one that maximizes expected utility if followed
- An explicit policy defines a reflex agent

Optimal policy when $R\left(s, a, s^{\prime}\right)=-0.03$ for all non-terminals s

Optimal Policies

$R(s)=-0.01$

$R(s)=-0.4$

$R(s)=-0.03$

$R(s)=-2.0$

Discounting

- It's reasonable to maximize the sum of rewards
- It's also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

Optimal Quantities

- The value (utility) of a state s:
$\mathrm{V}^{*}(\mathrm{~s})=$ expected utility starting in s and acting optimally
- The value (utility) of a q-state (s, a):
$Q^{*}(\mathrm{~s}, \mathrm{a})=$ expected utility starting out having taken action a from state s and (thereafter) acting optimally

s is a
state
(s, a) is a
q-state
(s, a, s^{\prime}) is a transition
- The optimal policy:
$\pi^{*}(s)=$ optimal action from state s

Values of States

- Recursive definition of value:

$$
\begin{aligned}
& V^{*}(s)=\max _{a} Q^{*}(s, a) \\
& Q^{*}(s, a)=\sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]
\end{aligned}
$$

$$
V^{*}(s)=\max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right.
$$

Solving the recursion

Recursion for V^{*} is circular:

$$
V^{*}(s)=\max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]
$$

Solving the recursion

Recursion for V^{*} is circular:

$$
V^{*}(s)=\max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]
$$

- Not a problem for gas stations because states were totally ordered
- Can't assume this in general
- Solution: add a time component

$$
\begin{aligned}
V^{*}(s, t) & =\max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}, t-1\right)\right] \\
V^{*}(s, 0) & =0
\end{aligned}
$$

Solving the recursion

Recursion for V^{*} is circular:

$$
V^{*}(s)=\max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]
$$

- Not a problem for gas stations because states were totally ordered
- Can't assume this in general
- Solution: add a time component

$$
\begin{aligned}
V^{*}(s, t) & =\max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}, t-1\right)\right] \\
V^{*}(s, 0) & =0
\end{aligned}
$$

- Time t creates total ordering!
- Can recover $V^{*}(s)$ by taking $t \rightarrow \infty$

Value learning via dynamic programming

```
V = np.zeros(shape=(num_states, t_max))
for t in range(1, t_max):
```

for s in range(num_states):
$V[s, t]=\max ([\operatorname{sum}([T(s, a, s 2) *(R(s, a, s 2)$
+ gamma * V[s2, t-1])
for s2 in num_states])
for a in num_actions])

Value learning via dynamic programming

Can save memory with "sliding window" trick:
V = np.zeros(shape=(num_states, t_max))
for t in range(1, t_max):
for s in range(num_states):
$\mathrm{V}[\mathrm{s}, \mathrm{t}]=\max ([\operatorname{sum}([\mathrm{T}(\mathrm{s}, \mathrm{a}, \mathrm{s} 2) *(\mathrm{R}(\mathrm{s}, \mathrm{a}, \mathrm{s} 2)$ + gamma * $\mathrm{V}[\mathrm{s} 2, \mathrm{t}-1])$
for s2 in num_states])
for a in num_actions])

Value learning via dynamic programming

Can save memory with "sliding window" trick:

```
V = np.zeros(num_states)
for t in range(1, t_max):
    V_old = np.copy(V)
    for s in range(num_states):
    V[s] = max([sum([T(s, a, s2) * (R(s, a, s2)
                + gamma * V_old[s2])
    for s2 in num_states])
    for a in num_actions])
```


Exploiting monotonicity

Since updates monotonically approach V^{*}, can update in place:
V = np.zeros(num_states)
for t in range(1, t_max):
for s in range (num_states):
$\mathrm{V}[\mathrm{s}] \quad=\max ([\operatorname{sum}([T(s, a, s 2) *(R(s, a, s 2)$ + gamma * V[s2])
for s2 in num_states])
for a in num_actions])

Recap

- Defined Markov decision process:
- states, actions, (stochastic) transitions, rewards
- Recursion (Bellman equations)
- Efficient solution via dynamic programming
- Even more efficient solution exploiting monotonicity (in-place updates)
- Next lecture: what if transitions need to be learned? (RL)

