Lecture 24: Nonparametric Models

Jacob Steinhardt

November 17, 2020

Motivation

Recall linear regression / classification setup:

$$
\begin{aligned}
& L(\beta)=\frac{1}{n} \sum_{i=1}^{n}\left(y^{(i)}-\beta^{\top} x^{(i)}\right)^{2} \text { (linear) } \\
& L(\beta)=\frac{1}{n} \sum_{i=1}^{n}-\log \sigma\left((-1)^{y^{(i)}} \beta^{\top} x^{(i)}\right) \text { (logistic) }
\end{aligned}
$$

Motivation

Recall linear regression / classification setup:

$$
\begin{aligned}
& L(\beta)=\frac{1}{n} \sum_{i=1}^{n}\left(y^{(i)}-\beta^{\top} x^{(i)}\right)^{2} \text { (linear) } \\
& L(\beta)=\frac{1}{n} \sum_{i=1}^{n}-\log \sigma\left((-1)^{y^{(i)}} \beta^{\top} x^{(i)}\right) \text { (logistic) }
\end{aligned}
$$

What if we want to learn more complex functions?
(E.g. true function not linear in x)

Motivation

Recall linear regression / classification setup:

$$
\begin{aligned}
& L(\beta)=\frac{1}{n} \sum_{i=1}^{n}\left(y^{(i)}-\beta^{\top} \phi\left(x^{(i)}\right)\right)^{2} \text { (linear) } \\
& L(\beta)=\frac{1}{n} \sum_{i=1}^{n}-\log \sigma\left((-1)^{y^{(i)}} \beta^{\top} \phi\left(x^{(i)}\right)\right) \text { (logistic) }
\end{aligned}
$$

What if we want to learn more complex functions?
(E.g. true function not linear in x)

Non-linear Examples

Non-linear Examples

Non-linear Examples

- This gets tedious.
- What if we can't think of good features ahead of time?

Non-parametric modeling

Non-parametric modeling: define flexible function classes so we don't need to hand-engineer features.

Non-parametric modeling

Non-parametric modeling: define flexible function classes so we don't need to hand-engineer features.

Many approaches:

- Random features
- Neural networks
- Kernels
- Decision trees

Non-parametric modeling

Non-parametric modeling: define flexible function classes so we don't need to hand-engineer features.

Many approaches:

- Random features
- Neural networks
- Kernels
- Decision trees

Focus on first two for this lecture

Random features

Input $x \in \mathbb{R}^{d}$, but can't think of good features function $\phi(x)$

Random features

Input $x \in \mathbb{R}^{d}$, but can't think of good features function $\phi(x)$

Solution: make ϕ random but high-dimensional:

$$
\begin{equation*}
\phi(x)=\operatorname{sign}(M x+b), \tag{1}
\end{equation*}
$$

where $M \in \mathbb{R}^{d \times k}$ and $b \in \mathbb{R}^{k}$ are random vectors (chosen once at beginning).

Random features

Input $x \in \mathbb{R}^{d}$, but can't think of good features function $\phi(x)$

Solution: make ϕ random but high-dimensional:

$$
\begin{equation*}
\phi(x)=\operatorname{sign}(M x+b), \tag{1}
\end{equation*}
$$

where $M \in \mathbb{R}^{d \times k}$ and $b \in \mathbb{R}^{k}$ are random vectors (chosen once at beginning).

Other features work too, e.g. $\cos (M x+b)$, etc. Key points are randomness (good variation) and high dimensionality (usually $k>d$).

Random features: Jupyter demo

[switch to notebook]

Learned features

- Random features can be too crude
- What if features themselves are learnable?

Learned features

- Random features can be too crude
- What if features themselves are learnable?

Two-layer neural network:

$$
\begin{aligned}
\phi(x) & =\sigma\left(M_{1} x+b_{1}\right), \\
p(y \mid x) & =\sigma\left(M_{2} \sigma\left(M_{1} x+b_{1}\right)+b_{2}\right) .
\end{aligned}
$$

Learned features

- Random features can be too crude
- What if features themselves are learnable?

Two-layer neural network:

$$
\begin{aligned}
\phi(x) & =\sigma\left(M_{1} x+b_{1}\right), \\
p(y \mid x) & =\sigma\left(M_{2} \sigma\left(M_{1} x+b_{1}\right)+b_{2}\right)
\end{aligned}
$$

Modern ML: iterate to many layers (and use different non-linearity σ, convolutional structure, etc.)

Learned features: Jupyter demo

[switch to notebook]

Fitting a neural network model

How do we actually fit M and b ?

Recall stochastic gradient descent: update parameters $w=\left(M_{1}, M_{2}, b_{1}, b_{2}\right)$ by following gradient of the loss $\nabla L(w)$:

$$
w^{\prime} \leftarrow w-\eta \nabla L(w)
$$

How do we compute $\nabla L(w)$?

Computing the gradient

[on board]

Backpropagation and autodiffentiation

- Given any "computation graph", we can write down derivatives recursively using the chain rule
- Then solve using dynamic programming!
- This is called backpropagation or autodifferentiation, key idea in Pytorch and other libraries
- Will build this up starting with simple examples

Backprop: simple example

[on board: $(a+b) c^{2}$ example]

Backprop: two-layer network

[on board]

Backprop in pytorch

[Jupyter demo]

