Lecture 8: Rejection Sampling and Markov chain review

Jacob Steinhardt

September 22, 2020

Last Time

- Latent variable models
- Bayesian hierarchical model (COVID meta-analysis)
- Hidden Markov model (ice cores)
- Election forecasting model

This time: approximate inference via sampling algorithms

Sampling: General Idea

Have a distribution $p(x)$ or $\left(p\left(x_{1}, x_{2}, \ldots\right)\right)$

Sampling: General Idea

Have a distribution $p(x)$ or $\left(p\left(x_{1}, x_{2}, \ldots\right)\right)$
Want some way of "querying" the distribution. E.g.:

- What is the variance?
- What is the probability that $x_{2}>x_{1}$?

Sampling: General Idea

Have a distribution $p(x)$ or $\left(p\left(x_{1}, x_{2}, \ldots\right)\right)$
Want some way of "querying" the distribution. E.g.:

- What is the variance?
- What is the probability that $x_{2}>x_{1}$?

If we just have the pdf, unclear how to do this. Instead, suppose we have samples $x^{(1)}, \ldots, x^{(S)} \sim p$.

Sampling: General Idea

Have a distribution $p(x)$ or $\left(p\left(x_{1}, x_{2}, \ldots\right)\right)$
Want some way of "querying" the distribution. E.g.:

- What is the variance?
- What is the probability that $x_{2}>x_{1}$?

If we just have the pdf, unclear how to do this. Instead, suppose we have samples $x^{(1)}, \ldots, x^{(S)} \sim p$.

- Can approximate any statistic $f: \mathbb{E}_{x \sim p}[f(x)] \approx \frac{1}{S} \sum_{s=1}^{S} f\left(x^{(s)}\right)$

Sampling: General Idea

Have a distribution $p(x)$ or $\left(p\left(x_{1}, x_{2}, \ldots\right)\right)$
Want some way of "querying" the distribution. E.g.:

- What is the variance?
- What is the probability that $x_{2}>x_{1}$?

If we just have the pdf, unclear how to do this. Instead, suppose we have samples $x^{(1)}, \ldots, x^{(S)} \sim p$.

- Can approximate any statistic $f: \mathbb{E}_{x \sim p}[f(x)] \approx \frac{1}{S} \sum_{s=1}^{S} f\left(x^{(s)}\right)$
- $f(x)=\left(x, x^{2}\right)$ (variance)
- $f\left(x_{1}, x_{2}\right)=\mathbb{I}\left[x_{2}>x_{1}\right]$

Sampling: General Idea

Have a distribution $p(x)$ or $\left(p\left(x_{1}, x_{2}, \ldots\right)\right)$
Want some way of "querying" the distribution. E.g.:

- What is the variance?
- What is the probability that $x_{2}>x_{1}$?

If we just have the pdf, unclear how to do this. Instead, suppose we have samples $x^{(1)}, \ldots, x^{(S)} \sim p$.

- Can approximate any statistic $f: \mathbb{E}_{x \sim p}[f(x)] \approx \frac{1}{S} \sum_{s=1}^{S} f\left(x^{(s)}\right)$
- $f(x)=\left(x, x^{2}\right)$ (variance)
- $f\left(x_{1}, x_{2}\right)=\mathbb{I}\left[x_{2}>x_{1}\right]$
- Interpretable, efficient way to represent a distribution

Sampling: General Idea

Have a distribution $p(x)$ or $\left(p\left(x_{1}, x_{2}, \ldots\right)\right)$
Want some way of "querying" the distribution. E.g.:

- What is the variance?
- What is the probability that $x_{2}>x_{1}$?

If we just have the pdf, unclear how to do this. Instead, suppose we have samples $x^{(1)}, \ldots, x^{(S)} \sim p$.

- Can approximate any statistic $f: \mathbb{E}_{x \sim p}[f(x)] \approx \frac{1}{S} \sum_{s=1}^{S} f\left(x^{(s)}\right)$
- $f(x)=\left(x, x^{2}\right)$ (variance)
- $f\left(x_{1}, x_{2}\right)=\mathbb{I}\left[x_{2}>x_{1}\right]$
- Interpretable, efficient way to represent a distribution
- How many samples to get error ε ?

Sampling Algorithms

Eventual target: Metropolis-Hastings algorithm (MCMC)

- Named among the "top 10 algorithms of the 20th century"

Sampling Algorithms

Eventual target: Metropolis-Hastings algorithm (MCMC)

- Named among the "top 10 algorithms of the 20th century"

First, need some build-up:

- Rejection sampling
- Markov chains

Warm-up: Sampling from unit circle

How to sample uniformly from the blue region?

Rejection sampling

[Jupyter demos]

Rejection sampling

[on board: general algorithm and normalization constant]

Rejection sampling

Input:

- Proposal distribution $q(x)$ (that we can sample from)
- Target distribution $p(x)$ (unnormalized; must satisfy $p(x) \leq q(x)$ for all x)

Rejection sampling

Input:

- Proposal distribution $q(x)$ (that we can sample from)
- Target distribution $p(x)$ (unnormalized; must satisfy $p(x) \leq q(x)$ for all x)

Algorithm:

- For $s=1, \ldots, S$:
- Sample $x \sim q$
- With probability $p(x) / q(x)$, accept x and add to list of samples
- Otherwise, reject

Rejection sampling

Input:

- Proposal distribution $q(x)$ (that we can sample from)
- Target distribution $p(x)$ (unnormalized; must satisfy $p(x) \leq q(x)$ for all x)

Algorithm:

- For $s=1, \ldots, S$:
- Sample $x \sim q$
- With probability $p(x) / q(x)$, accept x and add to list of samples
- Otherwise, reject

Pros: simple, can use with many pairs of densities, provides exact samples

Rejection sampling

Input:

- Proposal distribution $q(x)$ (that we can sample from)
- Target distribution $p(x)$ (unnormalized; must satisfy $p(x) \leq q(x)$ for all x)

Algorithm:

- For $s=1, \ldots, S$:
- Sample $x \sim q$
- With probability $p(x) / q(x)$, accept x and add to list of samples
- Otherwise, reject

Pros: simple, can use with many pairs of densities, provides exact samples Cons: can be slow (curse of dimensionality)

Markov chains

Markov Chains

Markov chain: sequence $x_{1}, x_{2}, \ldots, x_{T}$ where distribution of x_{t} depends only on x_{t-1}

Defined by transition distribution $A\left(x^{\text {new }} \mid x^{\text {old }}\right)$, together with initial state x_{1}

Examples:

- Random walk on a graph
- Repeatedly shuffling a deck of cards
- Process defined by

$$
x_{1}=0, \quad x_{t} \mid x_{t-1} \sim N\left(0.9 x_{t-1}, 1\right)
$$

Markov Chains: Stationary Distribution

All "nice enough" Markov chains have the property that if T is large enough, the distribution over x_{T} is almost independent of x_{1}, and converges to some distribution $\bar{p}(x)$ as $T \rightarrow \infty$.

Markov Chains: Stationary Distribution

All "nice enough" Markov chains have the property that if T is large enough, the distribution over x_{T} is almost independent of x_{1}, and converges to some distribution $\bar{p}(x)$ as $T \rightarrow \infty$.
$\bar{p}(x)$ is called the stationary distribution, and the technical condition for "nice enough" is that the Markov chain is ergodic.

Markov Chains: Stationary Distribution

All "nice enough" Markov chains have the property that if T is large enough, the distribution over x_{T} is almost independent of x_{1}, and converges to some distribution $\bar{p}(x)$ as $T \rightarrow \infty$.
$\bar{p}(x)$ is called the stationary distribution, and the technical condition for "nice enough" is that the Markov chain is ergodic.

The distribution $\bar{p}(x)$ is also what we get if we count how many times x_{t} visits each state, as $T \rightarrow \infty$.

Markov Chains: Mixing Time

The mixing time is how long it takes for x_{T} to be close to the stationary distribution (we won't define this formally).

Markov Chains: Mixing Time

The mixing time is how long it takes for x_{T} to be close to the stationary distribution (we won't define this formally).

Example: card shuffling

- Mixing time is how many shuffles we need for deck to be "almost random"

Markov Chains: Mixing Time

The mixing time is how long it takes for x_{T} to be close to the stationary distribution (we won't define this formally).

Example: card shuffling

- Mixing time is how many shuffles we need for deck to be "almost random"

Other examples:

- Random walk on complete graph with n vertices
- Random walk on path of length n

TRAILING THE DOVETAIL SHUFFLE TO ITS LAIR

By Dave Bayer ${ }^{1}$ and Persi Diaconis ${ }^{2}$
Columbia University and Harvard University

Abstract

We analyze the most commonly used method for shuffling cards. The main result is a simple expression for the chance of any arrangement after any number of shuffles. This is used to give sharp bounds on the approach to randomness: $\frac{3}{2} \log _{2} n+\theta$ shuffles are necessary and sufficient to mix up n cards.

Key ingredients are the analysis of a card trick and the determination of the idempotents of a natural commutative subalgebra in the symmetric group algebra.

1. Introduction. The dovetail, or riffle shuffle is the most commonly used method of shuffling cards. Roughly, a deck of cards is cut about in half and then the two halves are riffled together. Figure 1 gives an example of a riffle shuffle for a deck of 13 cards.

A mathematically precise model of shuffling was introduced by Gilbert and Shannon [see Gilbert (1955)] and independently by Reeds (1981). A deck of n cards is cut into two portions according to a binomial distribution; thus, the chance that k cards are cut off is $\binom{n}{k} / 2^{n}$ for $0 \leq k \leq n$. The two packets are then riffled together in such a way that cards drop from the left or right heaps

Markov chains: recap

- Governed by proposal distribution $A\left(x^{\text {new }} \mid x^{\text {old }}\right)$
- Stationary distribution: limiting distribution of x_{T}
- Mixing time: how long it takes to get to stationary distribution

