
Lecture 8: Rejection Sampling and Markov chain review

Jacob Steinhardt

September 22, 2020

J. Steinhardt Sampling September 22, 2020 1 / 14



Last Time

Latent variable models
Bayesian hierarchical model (COVID meta-analysis)
Hidden Markov model (ice cores)
Election forecasting model

This time: approximate inference via sampling algorithms
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Sampling: General Idea

Have a distribution p(x) or (p(x1,x2, . . .))

Want some way of “querying” the distribution. E.g.:

What is the variance?

What is the probability that x2 > x1?

If we just have the pdf, unclear how to do this. Instead, suppose we have
samples x(1), . . . ,x(S) ∼ p.

Can approximate any statistic f : Ex∼p[f (x)]≈ 1
S ∑

S
s=1 f (x(s))

f (x) = (x ,x2) (variance)
f (x1,x2) = I[x2 > x1]

Interpretable, efficient way to represent a distribution

How many samples to get error ε?
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Sampling Algorithms

Eventual target: Metropolis-Hastings algorithm (MCMC)

Named among the “top 10 algorithms of the 20th century”

First, need some build-up:

Rejection sampling

Markov chains
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Warm-up: Sampling from unit circle

How to sample uniformly from the blue region?
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Rejection sampling

[Jupyter demos]
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Rejection sampling

[on board: general algorithm and normalization constant]
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Rejection sampling

Input:

Proposal distribution q(x) (that we can sample from)

Target distribution p(x) (unnormalized; must satisfy p(x)≤ q(x) for all x)

Algorithm:
For s = 1, . . . ,S:

Sample x ∼ q
With probability p(x)/q(x), accept x and add to list of samples
Otherwise, reject

Pros: simple, can use with many pairs of densities, provides exact samples
Cons: can be slow (curse of dimensionality)
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Markov chains
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Markov Chains

Markov chain: sequence x1,x2, . . . ,xT where distribution of xt depends only on
xt−1

Defined by transition distribution A(xnew | xold), together with initial state x1

Examples:

Random walk on a graph

Repeatedly shuffling a deck of cards

Process defined by

x1 = 0, xt | xt−1 ∼ N(0.9xt−1,1)
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Markov Chains: Stationary Distribution

All “nice enough” Markov chains have the property that if T is large enough,
the distribution over xT is almost independent of x1, and converges to some
distribution p̄(x) as T → ∞.

p̄(x) is called the stationary distribution, and the technical condition for “nice
enough” is that the Markov chain is ergodic.

The distribution p̄(x) is also what we get if we count how many times xt visits
each state, as T → ∞.
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Markov Chains: Mixing Time

The mixing time is how long it takes for xT to be close to the stationary
distribution (we won’t define this formally).

Example: card shuffling

Mixing time is how many shuffles we need for deck to be “almost random”

Other examples:

Random walk on complete graph with n vertices

Random walk on path of length n
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TheAnnals of Applied Probability 
1992,Vol.2,No. 2,294-313 

TRAILING THE DOVETAIL SHUFFLE TO ITS LAIR 

BY DAVE BAYER' AND PERSI DIACONIS~ 

Columbia University and Harvard University 

We analyze the most commonly used method for shuffling cards. The 
main result is a simple expression for the chance of any arrangement after 
any number of shuffles. This is used to give sharp bounds on the approach 
to randomness: $ log, n + 0 shuffles are necessary and sufficient to mix up 
n cards. 

Key ingredients are the analysis of a card trick and the determination of 
the idempotents of a natural commutative subalgebra in the symmetric 
group algebra. 

1. Introduction. The dovetail, or riffle shuffle is the most commonly 
used method of shuffling cards. Roughly, a deck of cards is cut about in half 
and then the two halves are riffled together. Figure 1 gives an example of a 
riffle shuffle for a deck of 13 cards. 

A mathematically precise model of shuffling was introduced by Gilbert and 
Shannon [see Gilbert (1955)l and independently by Reeds (1981). A deck of n 
cards is cut into two portions according to a binomial distribution; thus, the 
chance that k cards are cut off is (;)/2" for 0 a k a n .  The two packets are 
then riffled together in such a way that cards drop from the left or right heaps 
with probability proportional to the number of cards in each heap. Thus, if 
there are A and B cards remaining in the left and right heaps, then the 
chance that the next card will drop from the left heap is A/(A + B).  Such 
shuffles are easily described backwards: Each card has an equal and indepen- 
dent chance of being pulled back into the left or right heap. An inverse riffle 
shuffle is illustrated in Figure 2. 

Experiments reported in Diaconis (1988) show that the Gilbert-Shannon- 
Reeds (GSR) model is a good description of the way real people shuffle real 
cards. I t  is natural to ask how many times a deck must be shuffled to mix it 
up. In Section 3 we prove: 

THEOREM1. If n cards are shufled m times, then the chance that the deck 
is in arrangement rr +:(2"'is - r ) /2mn,  where r is the number of rising 
sequences in 7. 

Rising sequences are defined and illustrated in Section 2 through the 
analysis of a card trick. Section 3 develops several equivalent interpretations of 

Received January 1990; revised May 1991. 
'partially supported by the Alfred P. Sloan Foundation, by ONR contract N00014-87-KO214 

and by NSF Grant DMS-90-06116. 
,partially supported by NSF Grant DMS-89-05874. 
AMS 1980 subject classifications. 20B30, 60B15, 60C05, 60399. 
Key words and phrases. Card shuffling, symmetric group algebra, total variation distance. 
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Markov chains: recap

Governed by proposal distribution A(xnew | xold)

Stationary distribution: limiting distribution of xT

Mixing time: how long it takes to get to stationary distribution
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