
DS 102 Homework 1

Name:
Discussed with:

If you are handwriting your solution please make sure your answers are legible,
as you may lose points otherwise.
Data science is a collaborative activity. While you may talk with others about
the homework, please write up your solutions individually. If you do discuss
the homework with others, please include their names on your submission.

Due on Gradescope by 9:29am, Tuesday 11th February, 2020

This homework involves a fair amount of coding, so we recommend reading through the
entire homework beforehand and carefully using functions for testing procedures, plotting,
and running experiments. Taking the time to reuse code will help in the long run!

1. (20 points) Fundamentals of Decision Theory. For the following two parts, identify
the components of the decision theoretic framework: the data X, the parameter of
interest θ, the decision procedure δ(X), and the loss function `(θ, δ(X)).

(a) (3 points) During World War II, the Allied forces attempted to estimate the total
number of German tanks that had been produced, given the serial numbers of the
k tanks they had captured. Assume serial numbers corresponded to the order in
which the tanks were produced (e.g. tank #126 was the 126-th tank produced).
A method that turned out to be quite accurate, in terms of squared error, was to
estimate the maximum serial number m captured, plus the average gap between
captured serial numbers: m+ (m− k)/k.

(b) (3 points) Evolutionary biologists are interested in detecting mutations that are
adaptive (arose then persisted due to selection) rather than neutral (arose then
persisted just by chance). If the same mutation (say, from an A to a C at certain
site) occurred independently inN different species, one way to decide it is adaptive is
if the probability that the specific mutation arose N times under neutral mutation
rates* is below some threshold η. Because this decision is used for downstream
scientific conclusions, there is a cost C01 when an adaptive mutation is labeled as
neutral, and a cost C10 when a neutral mutation is labeled as adaptive, and no cost
otherwise.

* Values of P(i mutates to j then does not mutate) for i, j ∈ {A, C, G, T} when mutations
are known to be neutral.

For the following two parts, derive the decision procedure δ∗ that minimizes the
risk given different loss functions. That is, provide an expression for

δ∗ = min
δ
R(δ) = min

δ
Eθ,X∼P[`(θ, δ(X))]

when:



(c) (5 points) `(θ, δ(X)) = (θ − δ(X))2

(d) (9 points) `(θ, δ(X)) = 1[θ 6= δ(X)]

2. (20 points) Likelihood Ratio Test and Neyman-Pearson Lemma.

Let X be a continuous random variable distributed over the closed interval [0,1]. Under
the null hypothesis H0, X is uniform:

P(X|H0) =

{
1 0 ≤ X ≤ 1

0 otherwise

Under the alternative hypothesis H1, the conditional pdf of X is as follows:

P(X|H1) =

{
2X 0 ≤ X ≤ 1

0 otherwise

The a priori probability that X is uniformly distributed is p ∈ (0, 1). Associated with
the possible decisions are the costs C00 = C11 = 0 and C01, C10 ∈ [0,∞], where Cij is

the cost of deciding Ĥ(X) = Hi when the correct hypothesis is H = Hj.

(a) (10 points) Find the decision rule that minimizes the probability of error.
Hint: one approach is to proceed in two steps. First, the rule that minimizes the
probability of error corresponds to a likelihood ratio test for some significance level
(why?). Next, note that the probability of error can be written as a function of the
threshold in the likelihood ratio test.

(b) (5 points) Define PD and PF as::

PD = P(Ĥ = H1|H = H1)

PF = P(Ĥ = H1|H = H0)

Express PD as a function of PF for the likelihood ratio test (LRT).
Note that this closed form expression is called the operating characteristic of LRT.

(c) (5 points) Determine whether the following statement is true or false, and
justify your answer:
For at least some value(s) of PF , there exists some other decision rules that can
achieve a greater PD than that corresponding to the operating characteristic you

found in part (b).

3. (20 points) Offline FDR Control. Consider testing N = 1000 hypotheses H1, . . . , HN ,
and let H0 ⊆ {1, . . . , N} denote the indices of the nulls among them (so that i ∈ H0

if index i correspond to a null). Denote by π0 the proportion of true null hypotheses,
π0 = |H0|/N . Denote by P1, . . . , PN the corresponding p-values. Suppose that the
alternative p-values Pi, i 6∈ H0 are equal to 0.01 with probability one, and that the null
p-values Pi, i ∈ H0 are as usual independent and uniformly distributed on [0, 1]. Our
target FDR or FWER level is α = 0.05.
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FDR is a problem when the proportion of alternatives among the N hypotheses is low.
In this exercise, we aim to demonstrate this statement in practice.

(a) (5 points) Suppose that you apply the “classical” uncorrected decision strategy:
reject Hi if Pi ≤ α. Express the resulting FDR in terms of π0, N and α.
(Hint: The number of null hypotheses Hi which have Pi ≤ α is in some sense the
number of “successes” in Nπ0 trials, where each trial succeeds with probability
P(Pi ≤ α) = α. What distribution is this? You don’t have to simplify the final
expression much.)

(b) (3 points) Assuming the decision rule from part (a), plot the FDR against π0, for
π0 ∈ Π0 := {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. Do not approximate it; use the
formula obtained in part (a). What is the expected sensitivity of this decision rule?
Recall that

E[sensitivity] = E
[

number of true discoveries

N(1− π0)

]
.

(c) (5 points) Now consider the Bonferroni correction. What is the expected sensitivity
of this procedure? Express the FDR in terms of π0, N and α (you don’t need to
simplify the expression). Plot this expression for the FDR against π0 ∈ Π0, where
Π0 is defined in part (b). Recall that FDR = E[FDP], and FDP = 0 if there are no
discoveries (i.e. we “assume” 0/0=0).

(d) (2 points) Assuming that the alternative p-values are still constant (but not necessarily
equal to 0.01), how much would you have to decrease them for the Bonferroni
procedure to discover all of them?

(e) (5 points) Now use the Benjamini-Hochberg procedure to find discoveries. In this
part, we will approximate the average sensitivity and FDR through simulation.
Approximate both by averaging the false discovery proportion and sensitivity over
100 independent simulations. Note that the randomness should only come from
the null p-values. Plot the resulting FDR and expected sensitivity against π0, for
π0 ∈ Π0. Compare your observations in part (c) and part (e).

4. (20 points) Online FDR Control. In some applications of multiple testing, it is not
possible to collect all p-values before making decisions about which hypotheses should be
proclaimed discoveries. For example, in A/B testing in the IT industry, p-values arrive
in a virtually never-ending stream, so decisions have to be made in an online fashion,
without knowing the p-values of future hypotheses. In this question, we compare an
online algorithm for FDR control called LORD with the classical Benjamini-Hochberg
(BH) procedure. We will provide an implementation of the LORD algorithm, however,
for completeness, we also state the steps of the LORD algorithm below. Don’t worry if
you don’t have intuition for the αt update; the important thing is that such an update
ensures that FDR is controlled at any given time t.
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Algorithm 1 The LORD Procedure

input: FDR level α, non-increasing sequence {γt}∞t=1 such that
∑∞

t=1 γt = 1, initial wealth
W0 ≤ α

Set α1 = γ1W0

for t = 1, 2, . . . do
p-value Pt arrives
if Pt ≤ αt, reject Pt
αt+1 = γt+1W0 + γt+1−τ1(α−W0)1{τ1 < t}+ α

∑∞
j=2 γt+1−τj1{τj < t},

where τj is time of j-th rejection τj = min{k :
∑k

l=1 1{Pl ≤ αl} = j}
end

While offline algorithms like Benjamini-Hochberg take as input a set of p-values, online
algorithms take in an ordered sequence of p-values. This makes their performance
sensitive to p-value ordering. In this exercise we analyze this phenomenon.

(a) (15 points) You will generate N = 1000 p-values in three different ways:

(i) For every i ∈ {1, . . . , N}, generate θi ∼ Bern(π0). If θi = 0, the p-value Pi is
null, and should be generated from Unif[0, 1]. If θi = 1, the p-value Pi is an
alternative. Then, generate Zi ∼ N(3, 1), and let Pi = Φ(−Zi), where Φ is the
standard Gaussian N(0, 1) CDF.

(ii) For i = 1, . . . , π0N , set θi = 0, meaning the hypothesis is truly null, and let
Pi ∼ Unif[0, 1]. For i = π0N + 1, . . . , N , θi = 1, and the hypothesis is truly
alternative. Then, generate Zi ∼ N(3, 1), and let Pi = Φ(−Zi), where Φ is the
standard Gaussian N(0, 1) CDF.

(iii) For i = 1, . . . , N − π0N , set θi = 1, meaning the hypothesis is alternative,
generate Zi ∼ N(3, 1), and let Pi = Φ(−Zi), where Φ is the standard Gaussian
N(0, 1) CDF. For i = N − π0N + 1, . . . , N , θi = 0, and the hypothesis is truly
null; let Pi ∼ Unif[0, 1].

Run the LORD algorithm with α = 0.05 on three p-value sequences, given as in
(i), (ii) and (iii), respectively. Compute the false discovery proportion (FDP) and
sensitivity. Repeat this experiment 100 times to estimate FDR as the average
FDP over 100 trials, as well as the average sensitivity. Do this for all π0 ∈ Π0 :=
{0.1, 0.3, 0.5, 0.7, 0.9}. Make the following plots:

• FDR estimated over 100 trials on the y-axis against π0 ∈ Π0 on the x-axis, for
the three different scenarios (i), (ii) and (iii).

• Expected sensitivity estimated over 100 trials on the y-axis against π0 ∈ Π0 on
the x-axis, for the three different scenarios (i), (ii) and (iii).

For which of the three scenarios (i), (ii), (iii) does LORD achieve highest average
sensitivity? Can you give an intuitive explanation for this?
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