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DS 102 Homework 2

If you are handwriting your solution please make sure your answers are legible,
as you may lose points otherwise.
Data science is a collaborative activity. While you may talk with others about
the homework, please write up your solutions individually. If you do discuss
the homework with others, please include their names on your submission.

Due on Gradescope by 9:29am, Tuesday 25th February, 2020

1. (35 points) Non-discrimination Criteria

In ProPublica’s 2016 investigation, they claim that COMPAS exhibited
racial bias against black individuals. Specifically, the investigation revealed
a racial disparity in the error rates of the tool. Among the defendants who
ultimately did not recidivate, the Black defendants were labeled ”high risk”
at a higher rate than the White defendants.

Northpointe, the company that sells COMPAS, published a report in
response, arguing that their risk scores are equally accurate and predictive
for white and black defendants. In order to evaluate whether both of their
claims are true, we analyze the allegations and response in the framework
of our non-discrimination criteria: equal positive rates, equal error rates
and calibration by groups.

We will view this as a binary problem. We let the classifier Ŷ be 1 if a
defendant is “high risk” and 0 if they are “low risk” according to their
COMPAS score. Let Y be the true outcome, 1 if an individual recidivated
and 0 otherwise. Finally, let A be the race of the defendant.

(a) (8 points) Translate the following statements from ProPublica
as inequalities between conditional distributions of the classifier,
the true outcome, and sensitive attribute:

(1) Black defendants who did not recidivate within two years were
strictly more likely to be misclassified than their white counterparts.

(2) White defendants who re-offended within the next two years were
mistakenly labeled “low risk” strictly more often.

(b) (4 points) Do ProPublica’s statements in 1 (a) violate any of
the three fairness criteria discussed in class? If so, which
one?

(c) (4 points) Translate the following statements from Northpointe
into relationships between conditional probabilities: (use “≈”
to represent “comparable”)

Among the defendants who received the same COMPAS
score, a comparable percentage of the black defendants re
offend in comparison to the white defendants.

(d) (4 points) Which of the fairness criteria does Northpointe’s
claim in the previous part satisfy?
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(e) (8 points) Define pa as the proportion of group a that recidivate, i.e.
pa = P (Y = 1|A = a), TPRa as the true positive rate within group
a, FPRa as the false positive rate within group a. Define PPVa as
the positive preditive value for group a, and NPVa as the negative
predictive value group a as follows:

PPVa = P (Y = 1|Ŷ = 1, A = a)

Prove the following relationship:

PPVa =
TPRa · pa

TPRa · pa + FPRa · (1− pa)

for all a ∈ {black,white}.

Hint: First, try to express PPVa in terms of P (Ŷ = 1, Y = 1|A = a)
and P (Ŷ = 1|A = a). Use Bayes rule.

(f) (7 points) Suppose that recidivism probability is not independent of
race, i.e. P (Y = 1|A = black) 6= P (Y = 1|A = white), and the
two groups have nonzero true and false positive rates. Show that
if equalizing error rates holds, then the two groups cannot
have the same positive predictive values.
Hint: what does equalized error rates imply? You might want to use
the result from the previous part.

2. (25 points) Fairness threshold

In this problem, we consider an automated resume screening tool which
is used by a company to sort candidates based on whether or not they
should be invited for an on-site interview after an initial phone screen.

Let the random variable X denote the features of a candidate’s application
and Y denote whether a candidate is invited for an on site interview, where
Y = 1 indicates that an individual was invited.

Below is a table which shows the predictions and outcomes for applicants
split by membership in a minority religious group, with A = 1 indicating
that an individual is a member of this group and A = 0 indicating that
they are not. We assign Ŷ = 1 for those who will be considered more
closely by recruiters and Ŷ = 0 for those who will not.

A = 1 A = 0

Ŷ = 0 Ŷ = 1 Ŷ = 0 Ŷ = 1
Y = 0 360 40 400 2700 300 3000
Y = 1 40 60 100 600 900 1500

400 100 3300 1200



3

(a) (10 points) With membership in the religious group as the sensitive
attribute, does this classifier satisfy equalizing positive rates
criterion exactly? Does it satisfy equalizing error rates
criterion exactly? Justify your answer.

(b) (5 points) Suppose we use a threshold rule Ŷ = 1{R(X) > t}
which performs binary classification based on some score R(X) to

assign Ŷ = 1 for those who will be considered more closely by recruiters
and Ŷ = 0 for those who will not.
For the criteria that the classifier doesn’t satisfy, propose group
dependent thresholds, i.e. using threshold ta in group a, that
result in a classifier that does satisfy the criteria. You do not need to
specify exact quantities, rather comparisons with the current threshold.
You should not propose a trivial threshold that results in 0% or 100%
acceptance rates.

(c) (10 points) Suppose that the score is estimated using some historical
data. Compare and contrast the value of the intervention you
suggested in the previous part for the following two circumstances:

(1) You learn that the historical data comes from a hiring manager
who is a member of the religious group and has been heard telling
members that they have an “in” regardless of their qualifications.

(2) You learn that there is a well-regarded religious university nearby
that sends the resumes of highly qualified students to the company.
Historically, these candidates have highly relevant skill sets and
make up a majority of applications from the religious group.

There are many possible conclusions that could be drawn, so any
thoughtful and well explained response will receive credit.

3. (15 points) Visualizing calibration by group. Consider a binary classification
problem where X denotes the input variable, Y ∈ {0, 1} denotes the
output variable, and we have a score functionR(X) with which we construct
a decision rule.

Recall from section that we call a score function R(X) that takes on values
in [0, 1] calibrated if, for all r ∈ [0, 1],

P(Y = 1 | R(X) = r) = r.

Furthermore, for an attributeA that we care about, we callR(X) calibrated
by group if, for all r ∈ [0, 1] and values a that A can take on,

P(Y = 1 | R(X) = r, A = a) = r.

In practice, we do not know these probabilities. However, we can estimate
them given a dataset. In this problem you’ll implement and interpret a
common plot used to visualize how calibrated (or not) a score function is,
known as a calibration plot.
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(a) (5 points) We’ll create calibration plots for a dataset used to predict
whether a patient has heart disease. Download the data file heart.csv
from the course website. The file consists of three columns:

• Column 1 contains the scores (between 0 and 1) of the n patients,
output by a logistic regression model trained to predict whether
a patient has heart disease given several medical attributes.

• Column 2 contains the true binary label Y , indicating whether
or not the patient has heart disease.

• Column 3 contains a binary labelA indicating whether the patient
is male (1) or female (0).

Write a function calibration plot(), which takes as input

• an array of probabilities r of length m, such as np.arange(0,

1.1, 0.1)

• an array of scores of length n

• an array of true binary labels of length n

and outputs an array p of length m − 1, where the i-th element
contains

P̂(Y = 1 | R(X) ∈ [r[i], r[i + 1]))

The notation P̂ indicates that this is an estimate, where we compute
the fraction of instances with R(X) ∈ [r[i], r[i + 1]) that have the
true label Y = 1.

(b) (5 points) Run your implementation of calibration plot() on the
downloaded data, to produce an output array p of length m−1. Plot
r against p, with r on the x-axis and p on the y-axis. This is called
a calibration plot.

A perfectly calibrated score function has a calibration plot that lies
on the y = x diagonal line. The more the calibration plot deviates
from this line, the less calibrated the score function is. To help you
judge this, on top of the calibration plot, plot the y = x diagonal line.
(For example, if using matplotlib.pyplot in python, plt.plot([0,
1], [0, 1], "--k").)

1. Is this score function close to calibrated?

2. Pick any point (r[i], p[i]) on your calbration plot. State the
values (r[i], p[i]), and interpret what they mean.

(c) (5 points) Note that for any value a that an attribute A can take
on, you can run calibration plot() on only the scores and labels
corresponding to data points where A = a. This allows you to
compute calibration plots specific to a group. For example, let A
denote gender. Compute and plot a calibration plot for the male
patients, where the i-th element of the output is

P̂(Y = 1 | R(X) ∈ [r[i], r[i + 1]), A = 1 (male))
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and a calibration plot for the female patients, where the i-th element
of the output is

P̂(Y = 1 | R(X) ∈ [r[i], r[i + 1]), A = 0 (female)).

Compare the two plots with each other, along with the first plot
you generated in the previous part. Is this score function close to
calibrated by group? Is it more calibrated on one group than another?

4. (25 points) Linear Regression and the Gauss-Markov Theorem
This problem explores the implications of the Gauss-Markov Theorem for
the ordinary least-squares (OLS) estimator. We consider n data points
x(1), . . . , x(n) ∈ Rd and their corresponding target values y(1), . . . , y(n) ∈ R.
Our model assumes

y(i) = 〈β∗, x(i)〉+ ε(i)

where the errors ε(i) are independently distributed. Recall that the OLS
estimator is given by

β̂ =

(
1

n

n∑
i=1

x(i)x(i)T

)−1(
1

n

n∑
i=1

x(i)y(i)

)
.

The Gauss-Markov theorem states that if the ε(i) are independent from
each other and E[ε(i)|x(i)] = 0 for all i, then

1. β̂ = β∗ if n =∞
2. E[β̂] = β∗ if n is finite. This means the estimator is unbiased.

3. If Var[ε(i)] is the same for all i, β̂ has the lowest variance among all
unbiased estimates of β∗. A common way to say this is that the OLS
estimator is the best linear unbiased estimator (BLUE), where “best”
means lowest variance.

(a) (20 points) For each of the following two models, state whether the
Gauss-Markov theorem allows us to conclude that β̂ is an unbiased
estimate of β∗, and explain why or why not by specifying which
assumptions are satisfied and not satisfied. For all models, the z(i)

are independent of each other and of the x(i).

1. y(i) = 〈β∗, x(i)〉+ sin(x(i)) · z(i), where z(i) ∼ N(0, 1).

2. y(i) = 〈β∗, x(i)〉+ z(i)2, where z(i) ∼ N(0, 1).

3. y(i) = cos(〈β∗, x(i)〉) + z(i), where z(i) ∼ N(0, 1).

4. y(i) = 〈β∗, x(i)〉+ z(i), where z(i) ∼ N(0, |x(i)|).
5. y(i) = 〈β∗, x(i) + z(i)1〉, where z(i) takes on the value −1 with

probability 1/2 and the value 1 with probability 1/2. 1 is the
all-ones vector, so x(i) + z(i)1 is equivalent to adding z(i) to x(i)

element-wise.
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(b) (5 points) Consider the intercept-only model, where d = 1 and x(i) =
1:

y(i) = β∗ + ε(i)

What is the OLS estimator β̂ for the intercept-only model?


