Lecture 10: Approximate Inference via Sampling

Jacob Steinhardt

February 19, 2020

Last Time

- Latent variable models
 - Bayesian hierarchical model (heights and gender)
 - Hidden Markov model (counting fish in a pond)
 - Election forecasting model
- EM algorithm

This time: finish EM, start on sampling algorithms

Initialize $\theta^{(1)}$ arbitrarily. Then for t = 1, ..., T:

$$\begin{aligned} q^{(t)}(z) &\leftarrow p(z \mid x, \theta^{(t)}) & (\text{E step}) \\ \theta^{(t+1)} &\leftarrow \operatorname{argmax}_{\theta} \mathbb{E}_{z \sim q^{(t)}(z)}[\log p(z, x \mid \theta)] & (\text{M step}) \end{aligned}$$

Gaussian example

$$p(x_1, z_1, \dots \mid \pi, \mu_0, \mu_1, \sigma) = \prod_{i=1}^n p(z_i \mid \pi) p(x_i \mid z_i, \mu_0, \mu_1, \sigma)$$
$$= \prod_{i=1}^n \left[\pi^{z_i} (1-\pi)^{1-z_i} \right] \cdot \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{1}{2\sigma^2} (x_i - \mu_{z_i})^2) \right]$$

Gaussian example

$$p(x_1, z_1, \dots \mid \pi, \mu_0, \mu_1, \sigma) = \prod_{i=1}^n p(z_i \mid \pi) p(x_i \mid z_i, \mu_0, \mu_1, \sigma)$$
$$= \prod_{i=1}^n \left[\pi^{z_i} (1 - \pi)^{1 - z_i} \right] \cdot \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{1}{2\sigma^2} (x_i - \mu_{z_i})^2) \right]$$

Want to maximize likelihood. Take log:

$$\log p(x_1, z_1, \dots, x_n, z_n \mid \pi, \mu_0, \mu_1, \sigma) = \sum_{i=1}^n \underbrace{z_i \log(\pi) + (1 - z_i) \log(1 - \pi)}_{\text{log-likelihood of Bernoulli}} + \underbrace{\frac{1}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} (x_i - \mu_{z_i})^2}_{\text{log-likelihood of }(two) \text{ Generators}}$$

log-likelihood of (two) Gaussians

→ < Ξ

Image: Image:

→ ∃ →

Gaussian example

$$p(x_1, z_1, \dots \mid \pi, \mu_0, \mu_1, \sigma) = \prod_{i=1}^n p(z_i \mid \pi) p(x_i \mid z_i, \mu_0, \mu_1, \sigma)$$
$$= \prod_{i=1}^n \left[\pi^{z_i} (1 - \pi)^{1 - z_i} \right] \cdot \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{1}{2\sigma^2} (x_i - \mu_{z_i})^2) \right]$$

Want to maximize likelihood. Take log:

$$\log p(x_1, z_1, \dots, x_n, z_n \mid \pi, \mu_0, \mu_1, \sigma) = \sum_{i=1}^n \underbrace{z_i \log(\pi) + (1 - z_i) \log(1 - \pi)}_{\text{log-likelihood of Bernoulli}} + \underbrace{\frac{1}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} (x_i - \mu_{z_i})^2}_{\text{log-likelihood of (two) Gaussians}}$$

Note this is same as maximizing $\mathbb{E}[\log p(x, z \mid \pi, \mu_0, \mu_1, \sigma)]$, where expectation is over uniform distribution on x_i, z_i .

J. Steinhardt

Maximizing Likelihood for Exponential Families

The following result is helpful for quickly computing MLE solutions without algebra:

The following result is helpful for quickly computing MLE solutions without algebra:

Theorem. Suppose that $p(x | \theta)$ is an "exponential family with sufficient statistics g(x)". Then for any q(x), the solution to $\operatorname{argmax}_{\theta} \mathbb{E}_{x \sim q}[\log p(x | \theta)]$ is the parameters θ^* such that $\mathbb{E}_{x \sim q}[g(x)] = \mathbb{E}_{x \sim p(x | \theta^*)}[g(x)]$.

The following result is helpful for quickly computing MLE solutions without algebra:

Theorem. Suppose that $p(x | \theta)$ is an "exponential family with sufficient statistics g(x)". Then for any q(x), the solution to $\operatorname{argmax}_{\theta} \mathbb{E}_{x \sim q}[\log p(x | \theta)]$ is the parameters θ^* such that $\mathbb{E}_{x \sim q}[g(x)] = \mathbb{E}_{x \sim p(x | \theta^*)}[g(x)]$.

Will say what exponential families are next, but for now note that $g(x) = (x, x^2)$ for Gaussians, and g(x) = x for Bernoulli.

The following result is helpful for quickly computing MLE solutions without algebra:

Theorem. Suppose that $p(x | \theta)$ is an "exponential family with sufficient statistics g(x)". Then for any q(x), the solution to $\operatorname{argmax}_{\theta} \mathbb{E}_{x \sim q}[\log p(x | \theta)]$ is the parameters θ^* such that $\mathbb{E}_{x \sim q}[g(x)] = \mathbb{E}_{x \sim p(x | \theta^*)}[g(x)]$.

Will say what exponential families are next, but for now note that $g(x) = (x, x^2)$ for Gaussians, and g(x) = x for Bernoulli.

Tells us that MLE for Bernoulli is $\pi^* = \text{ fraction of 1's, MLE for Gaussian is}$ $\mu^*, \sigma^* = \text{empirical mean and stdev.}$

Working out Gaussian updates

[on board]

Proving the Exponential Family Result

[on board]

	-					
- 1		-	m	na	ra	т
•••	0			пu		

Proving the Exponential Family Result

[on board]

Next: sampling

Recall: two frameworks

- Maximize $\log p(x \mid \theta) = \log (\sum_z p(x, z \mid \theta))$ (EM, last time)
- Place prior on θ , sample $p(\theta, z \mid x)$ (this time)

Recall: two frameworks

- Maximize $\log p(x \mid \theta) = \log \left(\sum_{z} p(x, z \mid \theta) \right)$ (EM, last time)
- Place prior on θ , sample $p(\theta, z \mid x)$ (this time)

Why samples?

• Interpretable, efficient way to represent a distribution

Recall: two frameworks

- Maximize $\log p(x \mid \theta) = \log \left(\sum_{z} p(x, z \mid \theta) \right)$ (EM, last time)
- Place prior on θ , sample $p(\theta, z \mid x)$ (this time)

Why samples?

- Interpretable, efficient way to represent a distribution
- Can approximate any statistic:

$$\mathbb{E}_{x \sim p}[f(x)] \approx \frac{1}{n} \sum_{i=1}^{n} f(x_i), \qquad (1)$$

where the x_i are *n* samples from *p*.

Eventual target: Metropolis-Hastings algorithm (MCMC)

• Named among the "top 10 algorithms of the 20th century"

Eventual target: Metropolis-Hastings algorithm (MCMC)

• Named among the "top 10 algorithms of the 20th century"

First, need some build-up:

- Rejection sampling
- Importance sampling

[board and Jupyter demo]

Importance sampling

[board]

_				
. ~		ho	12.5	
-	Lн	 па		
	_	_		٠

Review: Markov chains

[board]

_				
. ~		ho	12.5	
-	Lн	 па		
	_	_		٠