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Last Time

Latent variable models
Bayesian hierarchical model (heights and gender)
Hidden Markov model (counting fish in a pond)
Election forecasting model

EM algorithm

This time: finish EM, start on sampling algorithms
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EM Algorithm

Initialize θ (1) arbitrarily. Then for t = 1, . . . ,T :

q(t)(z)← p(z | x ,θ (t)) (E step)

θ
(t+1)← argmaxθ Ez∼q(t)(z)[logp(z,x | θ)] (M step)
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Gaussian example

p(x1,z1, . . . | π,µ0,µ1,σ) =
n

∏
i=1

p(zi | π)p(xi | zi ,µ0,µ1,σ)

=
n

∏
i=1

[
π

zi (1−π)1−zi
]
·
[ 1√

2πσ2
exp(− 1

2σ2 (xi −µzi )
2)
]

Want to maximize likelihood. Take log:

logp(x1,z1, . . . ,xn,zn | π,µ0,µ1,σ) =
n

∑
i=1

zi log(π)+(1− zi) log(1−π)︸ ︷︷ ︸
log-likelihood of Bernoulli

+
1
2

log(2πσ
2)− 1

2σ2 (xi −µzi )
2︸ ︷︷ ︸

log-likelihood of (two) Gaussians

Note this is same as maximizing E[logp(x ,z | π,µ0,µ1,σ)], where
expectation is over uniform distribution on xi ,zi .
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Maximizing Likelihood for Exponential Families

The following result is helpful for quickly computing MLE solutions without
algebra:

Theorem. Suppose that p(x | θ) is an “exponential family with sufficient
statistics g(x)”. Then for any q(x), the solution to argmaxθ Ex∼q[logp(x | θ)]
is the parameters θ ∗ such that Ex∼q[g(x)] = Ex∼p(x |θ ∗)[g(x)].

Will say what exponential families are next, but for now note that
g(x) = (x ,x2) for Gaussians, and g(x) = x for Bernoulli.

Tells us that MLE for Bernoulli is π∗ = fraction of 1’s, MLE for Gaussian is
µ∗,σ∗ = empirical mean and stdev.
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Working out Gaussian updates

[on board]
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Proving the Exponential Family Result

[on board]

Next: sampling
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Sampling: General Idea

Recall: two frameworks

Maximize logp(x | θ) = log
(

∑z p(x ,z | θ)
)

(EM, last time)

Place prior on θ , sample p(θ ,z | x) (this time)

Why samples?

Interpretable, efficient way to represent a distribution

Can approximate any statistic:

Ex∼p[f (x)]≈
1
n

n

∑
i=1

f (xi), (1)

where the xi are n samples from p.
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Sampling Algorithms

Eventual target: Metropolis-Hastings algorithm (MCMC)

Named among the “top 10 algorithms of the 20th century”

First, need some build-up:

Rejection sampling

Importance sampling

J. Steinhardt Sampling February 19, 2020 9 / 8



Sampling Algorithms

Eventual target: Metropolis-Hastings algorithm (MCMC)

Named among the “top 10 algorithms of the 20th century”

First, need some build-up:

Rejection sampling

Importance sampling

J. Steinhardt Sampling February 19, 2020 9 / 8



Rejection sampling

[board and Jupyter demo]
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Importance sampling

[board]
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Review: Markov chains

[board]
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