Lecture 10: Approximate Inference via Sampling

Jacob Steinhardt

February 19, 2020
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Last Time

@ Latent variable models

o Bayesian hierarchical model (heights and gender)
e Hidden Markov model (counting fish in a pond)
e Election forecasting model

@ EM algorithm

This time: finish EM, start on sampling algorithms
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EM Algorithm

Initialize 6(1) arbitrarily. Thenfort=1,...,T:

q(2) < p(z| x,6W) (E step)
0+« argmaxy By, llogp(z, x | 0)] (M step)
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Gaussian example

p(xi,21,... | m, o, 1, 0) = [ [ p(zi | ®)p(%i | 2i, o, 11, 0)

— IQI [n-zi(-' _ 7[)172,} . [\/zlr?exp(_z%‘z(xi _ Iiz,-)z)]
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Gaussian example

p(x1,21,... | T, Ho, p1,0) = HP(Zi | )p(xi | Zi los 1, ©)

[T (0 -] [ 5 G e

i=1

Want to maximize likelihood. Take log:

n
logp(X1,21,- .y Xn, 20 | 7T, Uo, U1,0) = Zz;log(n)+(1 —z;)log(1 —nl
= log-likelihood of Bernoulli
1
202

log-likelihood of (two) Gaussians

’
+5 log(2n6?) — (xi — iz )?
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Gaussian example
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Want to maximize likelihood. Take log:

n
logp(X1,21,- .y Xn, 20 | 7T, Uo, U1,0) = Zz;log(n)+(1 —z;)log(1 —nl
= log-likelihood of Bernoulli
1
202

log-likelihood of (two) Gaussians

’
+5 log(2n6?) — (xi — iz )?

Note this is same as maximizing E[logp(x,z | 7, to, U1,0)], where
expectation is over uniform distribution on x;, z;.
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Maximizing Likelihood for Exponential Families

The following result is helpful for quickly computing MLE solutions without
algebra:
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Maximizing Likelihood for Exponential Families

The following result is helpful for quickly computing MLE solutions without
algebra:

Theorem. Suppose that p(x | 8) is an “exponential family with sufficient
statistics g(x)”. Then for any g(x), the solution to argmaxg E~4[logp(x | 6)]
is the parameters 6" such that Exq[g(x)] = Exp(x6-)[9(X)]-
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Maximizing Likelihood for Exponential Families

The following result is helpful for quickly computing MLE solutions without
algebra:

Theorem. Suppose that p(x | 8) is an “exponential family with sufficient
statistics g(x)”. Then for any g(x), the solution to argmaxg E~4[logp(x | 6)]
is the parameters 6" such that Exq[g(x)] = Exp(x6-)[9(X)]-

Will say what exponential families are next, but for now note that
g(x) = (x,x?) for Gaussians, and g(x) = x for Bernoulli.
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Maximizing Likelihood for Exponential Families

The following result is helpful for quickly computing MLE solutions without
algebra:

Theorem. Suppose that p(x | 8) is an “exponential family with sufficient
statistics g(x)”. Then for any g(x), the solution to argmaxg E~4[logp(x | 6)]
is the parameters 6" such that Exq[g(x)] = Exp(x6-)[9(X)]-

Will say what exponential families are next, but for now note that
g(x) = (x,x?) for Gaussians, and g(x) = x for Bernoulli.

Tells us that MLE for Bernoulli is 7% = fraction of 1’s, MLE for Gaussian is
u*, o* = empirical mean and stdev.
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Working out Gaussian updates

[on board]
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Proving the Exponential Family Result

[on board]
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Proving the Exponential Family Result

[on board]

Next: sampling
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Sampling: General Idea

Recall: two frameworks
@ Maximize logp(x | 0) =log (¥, p(x,z| 6)) (EM, last time)
@ Place prior on 6, sample p(0, z | x) (this time)
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J. Steinhardt Sampling February 19, 2020 8/8



Sampling: General Idea

Recall: two frameworks

@ Maximize logp(x | 0) =log (¥, p(x,z| 6)) (EM, last time)

@ Place prior on 6, sample p(0, z | x) (this time)
Why samples?

@ Interpretable, efficient way to represent a distribution

@ Can approximate any statistic:

1 n
Explf(0] ~ - Y (), (1)

i=1

where the x; are n samples from p.
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Sampling Algorithms

Eventual target: Metropolis-Hastings algorithm (MCMC)
@ Named among the “top 10 algorithms of the 20th century”
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Sampling Algorithms

Eventual target: Metropolis-Hastings algorithm (MCMC)
@ Named among the “top 10 algorithms of the 20th century”

First, need some build-up:
@ Rejection sampling

@ Importance sampling
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Rejection sampling

[board and Jupyter demo]
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Importance sampling

[board]
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Review: Markov chains

[board]
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