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Announcements

Jacob away Wed-Fri (no office hours)

Lecture 12: Guest lecture (Clara Wong-Fannjiang)

HW2 due, HW3 released

Moritz back next week!
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Last Time

Rejection sampling

Importance sampling

This time: Markov chain Monte Carlo

Markov chain review

Gibbs sampling

Metropolis-Hastings
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Review: Markov Chains

Markov chain: sequence x1,x2, . . . ,xT where distribution of xt depends only on
xt−1

Defined by transition distribution A(xnew | xold), together with initial state x1

Examples:

Random walk on a graph

Repeatedly shuffling a deck of cards

Process defined by

x1 = 0, xt | xt−1 ∼ N(0.9xt−1,1)
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Markov Chains: Stationary Distribution

All “nice enough” Markov chains have the property that if T is large enough,
the distribution over xT is almost independent of x1, and converges to some
distribution p̄(x) as T → ∞.

p̄(x) is called the stationary distribution, and the technical condition for “nice
enough” is that the Markov chain is ergodic.

The distribution p̄(x) is also what we get if we count how many times xt visits
each state, as T → ∞.
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Markov Chains: Mixing Time

The mixing time is how long it takes for xT to be close to the stationary
distribution (we won’t define this formally).

Example: card shuffling

Mixing time is how many shuffles we need for deck to be “almost random”

Other examples:

Random walk on complete graph with n vertices

Random walk on path of length n

J. Steinhardt MCMC February 24, 2020 6 / 15



Markov Chains: Mixing Time

The mixing time is how long it takes for xT to be close to the stationary
distribution (we won’t define this formally).

Example: card shuffling

Mixing time is how many shuffles we need for deck to be “almost random”

Other examples:

Random walk on complete graph with n vertices

Random walk on path of length n

J. Steinhardt MCMC February 24, 2020 6 / 15



Markov Chains: Mixing Time

The mixing time is how long it takes for xT to be close to the stationary
distribution (we won’t define this formally).

Example: card shuffling

Mixing time is how many shuffles we need for deck to be “almost random”

Other examples:

Random walk on complete graph with n vertices

Random walk on path of length n

J. Steinhardt MCMC February 24, 2020 6 / 15



TheAnnals of Applied Probability 
1992,Vol.2,No. 2,294-313 

TRAILING THE DOVETAIL SHUFFLE TO ITS LAIR 

BY DAVE BAYER' AND PERSI DIACONIS~ 

Columbia University and Harvard University 

We analyze the most commonly used method for shuffling cards. The 
main result is a simple expression for the chance of any arrangement after 
any number of shuffles. This is used to give sharp bounds on the approach 
to randomness: $ log, n + 0 shuffles are necessary and sufficient to mix up 
n cards. 

Key ingredients are the analysis of a card trick and the determination of 
the idempotents of a natural commutative subalgebra in the symmetric 
group algebra. 

1. Introduction. The dovetail, or riffle shuffle is the most commonly 
used method of shuffling cards. Roughly, a deck of cards is cut about in half 
and then the two halves are riffled together. Figure 1 gives an example of a 
riffle shuffle for a deck of 13 cards. 

A mathematically precise model of shuffling was introduced by Gilbert and 
Shannon [see Gilbert (1955)l and independently by Reeds (1981). A deck of n 
cards is cut into two portions according to a binomial distribution; thus, the 
chance that k cards are cut off is (;)/2" for 0 a k a n .  The two packets are 
then riffled together in such a way that cards drop from the left or right heaps 
with probability proportional to the number of cards in each heap. Thus, if 
there are A and B cards remaining in the left and right heaps, then the 
chance that the next card will drop from the left heap is A/(A + B).  Such 
shuffles are easily described backwards: Each card has an equal and indepen- 
dent chance of being pulled back into the left or right heap. An inverse riffle 
shuffle is illustrated in Figure 2. 

Experiments reported in Diaconis (1988) show that the Gilbert-Shannon- 
Reeds (GSR) model is a good description of the way real people shuffle real 
cards. I t  is natural to ask how many times a deck must be shuffled to mix it 
up. In Section 3 we prove: 

THEOREM1. If n cards are shufled m times, then the chance that the deck 
is in arrangement rr +:(2"'is - r ) /2mn,  where r is the number of rising 
sequences in 7. 

Rising sequences are defined and illustrated in Section 2 through the 
analysis of a card trick. Section 3 develops several equivalent interpretations of 

Received January 1990; revised May 1991. 
'partially supported by the Alfred P. Sloan Foundation, by ONR contract N00014-87-KO214 

and by NSF Grant DMS-90-06116. 
,partially supported by NSF Grant DMS-89-05874. 
AMS 1980 subject classifications. 20B30, 60B15, 60C05, 60399. 
Key words and phrases. Card shuffling, symmetric group algebra, total variation distance. 
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Markov chains: recap

Governed by proposal distribution A(xnew | xold)

Stationary distribution: limiting distribution of xT

Mixing time: how long it takes to get to stationary distribution
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Gibbs Sampling: Motivation

Have an arbitrary distribution p(x1, . . . ,xn) that we want to sample from

Current tool: rejection sampling
Proposal distribution q(x1, . . . ,xn) for all xi at once
Issue: too slow (typically exponentially small acceptance rate in n)
E.g. even if xi are independent, and q(xi )/p(xi )≤ 1.1, need 1.1n tries
(≈ 2.5 ·1041 for n = 1000)

Idea behind Gibbs sampling: change one variable at a time (Markov
chain)
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Gibbs Sampling: Algorithm

Algorithm:

Initialize (x1, . . . ,xn) arbitrarily
Repeat:

Pick i (randomly or sequentially)
Re-sample xi from p(xi | x1, . . . ,xi−1,xi+1, . . . ,xn) (often denote p(xi | x−i ))

Defines a Markov chain, and can prove that the stationary distribution is
p(x1, . . . ,xn) (!!).
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Gibbs Sampling: Unit Circle Example
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Gibbs Sampling for Hierarchical Models

Recall hierarchical models (e.g. height and gender example)

θ

z1 z2 · · · zn

x1 x2 · · · xn

Suppose we want to do Gibbs instead of EM

Sample zi : p(zi | xi ,θ) ∝ p(zi | θ)︸ ︷︷ ︸
prior

p(xi | zi )︸ ︷︷ ︸
likelihood

Sample θ (e.g. µ0 for height/gender model):

p(µ0 | z1:n,x1:n) ∝ p(µ0)︸ ︷︷ ︸
prior

· ∏
i:zi=0

exp(−(xi −µ0)2/2σ
2)︸ ︷︷ ︸

likelihood
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Gibbs Sampling: Summary

Repeatedly sample from p(xi | x−i)

Creates Markov chain whose stationary distribution is p(x1, . . . ,xn)

Flexible: conditional p(xi | x−i) one-dimensional, easy to sample from

Don’t need to “get lucky” with graphical model structure

Extensions, e.g. block Gibbs sampling
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Metropolis-Hastings: Idea

Gibbs sampling: one possible Markov chain

Is there a more general strategy?

Yes! Combine with idea of rejection sampling

Given any “proposed Markov chain” q(xnew | xold), will combine with an
accept/reject step to create new Markov chain with the correct stationary
distribution
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Metropolis-Hastings: Algorithm

Proposal distribution: q(xnew | xold)

Given xold:

Sample xnew from q

With probability

min
(

1, p(xnew)
p(xold)

q(xold|xnew)
q(xnew|xold)

)

, accept (replace xold with

xnew)

Otherwise, reject (keep xold)

Gibbs sampling: special choice of q where we always accept!
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