
Related: Adversarial Robustness

Related: Adversarial Robustness

Defense Robustness Under Different Attacks

Adversarial Attack

Related: Adversarial Robustness

	Clean Accuracy	L_{∞}	L_2	L_1	Elastic	JPEG	Fog	Snow	Gabor	mUAR
SqueezeNet	84.1	5.2	11.2	14.9	25.9	1.9	20.1	9.8	4.4	12.8
ResNeXt-101 (32×8d)	95.9	2.5	5.5	20.7	26.5	1.8	14.1	12.4	5.3	13.4
ResNeXt-101 $(32\times8d)$ + WSL	97.1	3.0	5.7	28.3	29.4	1.9	26.2	20.3	8.0	19.0
ResNet-18	91.6	2.7	8.2	13.5	22.6	1.8	20.3	9.5	4.2	12.0
ResNet-50	94.2	2.7	6.6	20.1	24.9	1.8	15.8	11.9	4.9	13.2
ResNet-50 + Stylized ImageNet	94.6	2.9	7.4	22.8	26.0	1.8	16.2	12.5	8.1	14.6
ResNet-50 + Patch Gaussian	93.6	4.5	10.9	27.4	28.2	1.8	23.9	10.5	5.2	16.2
ResNet-50 + AugMix	95.1	6.1	13.4	34.3	38.8	1.8	28.6	24.7	11.1	23.2

Motivation

Folklore: ML does poorly OOD

Why and when? Can we predict it?

Motivation

Folklore: ML does poorly OOD

Why and when? Can we predict it?

Model works

Model does poorly

Geirhos et al., 2018; Ford et al., 2019

The Challenge

Test accuracy in-distribution well-defined (just measure it)

OOD not well-defined (many types); how to measure?

Danger: accidentally overfit to specific type

Geirhos et al., 2018; Ford et al., 2019

The Solution

Will consider many types of shift at once

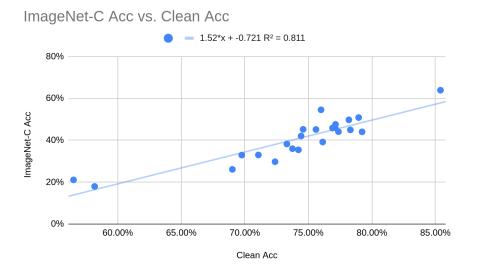
Original

ImageNet-C

ImageNet-A

ImageNet-v2

ImageNet-R


Starting Point: ImageNet-C

What helps with robustness?

Starting Point: ImageNet-C

What helps with robustness?

In-distribution accuracy:

Combined Results

	Resnet50	Resnet152	SE_Resnet152	SIN	WSL	AugMix
Orig.	76.1	78.3	78.7	74.6	85.4	77.6
IN-C	41.6	47.8	50.9	47.9	65.5	???
IN-v2	63.2	66.8	67.4	62.8	77.0	???
IN-R	37.1	42.9	40.9	44.0	81.6	42.8

Conclusions:

- pre-training helps a *lot*
- depth, data aug, accuracy also help
- SE accuracy gain was spurious