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Last Time

Bayesian Inference

Setup

Conjugate priors

Computing posteriors
Inference

Full posterior
MAP, LMSE

This time: more complex models, fast algorithm (EM)
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Recall: Heights and Gender

[Jupyter demo]
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Heights and Gender: Bayesian Model

Person i : gender zi ∈ {0,1}, height xi ∈ R

xi | zi ∼ N(µzi ,σ
2), i.e. p(xi | zi) ∝ exp

(
− 1

2σ2 (xi −µzi )
2
)

p(zi) = πzi (1−π)1−zi (Bernoulli with probability π)

“Hyperparameters”: µ0,µ1,σ
2,π

[draw graphical model]
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Latent Variable Model: General Form

θ

z

x

hyperparameters (µ1,µ2,σ ,π)

latent structure (gender)

observed output (height)
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Special Case: Hierarchical Model

θ

z1 z2 · · · zn

x1 x2 · · · xn

“Bayesian hierarchical model”
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Another Example: HMMs

Hidden Markov model
Fish population, changing over time

z1, . . . ,zT ; zt : population at time t

At each time t , randomly sample various locations in pond and count
number of fish

Measurements: x1, . . . ,xT

Model:
xt ∼ Poisson(λzt), zt+1 ∼ N(zt ,σ

2), z0 ∼ N(µ,σ2)

λ ,σ ,µ

z1 z2 · · · zn

x1 x2 · · · xn
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Final Example: Election Forecasting

2016 election forecasting

Want to know fraction of people who will vote for Clinton in each state

Each of 50 states has some number of polls

Each poll has large enough sample size that we can treat error as
normal-distributed

So have independent Gaussian margin of error in each state

Sample true fraction of Clinton supporters for each state, look at how
often Clinton wins

Something like this predicted 90% Clinton in 2016, but Trump won.

What is wrong with this analysis? [At least 2 things...]

J. Steinhardt Latent Variables and EM February 17, 2020 8 / 15



Final Example: Election Forecasting

2016 election forecasting

Want to know fraction of people who will vote for Clinton in each state

Each of 50 states has some number of polls

Each poll has large enough sample size that we can treat error as
normal-distributed

So have independent Gaussian margin of error in each state

Sample true fraction of Clinton supporters for each state, look at how
often Clinton wins

Something like this predicted 90% Clinton in 2016, but Trump won.

What is wrong with this analysis? [At least 2 things...]

J. Steinhardt Latent Variables and EM February 17, 2020 8 / 15



Final Example: Election Forecasting

2016 election forecasting

Want to know fraction of people who will vote for Clinton in each state

Each of 50 states has some number of polls

Each poll has large enough sample size that we can treat error as
normal-distributed

So have independent Gaussian margin of error in each state

Sample true fraction of Clinton supporters for each state, look at how
often Clinton wins

Something like this predicted 90% Clinton in 2016, but Trump won.

What is wrong with this analysis? [At least 2 things...]

J. Steinhardt Latent Variables and EM February 17, 2020 8 / 15



Election Forecasting Model

[on board]

Next: EM algorithm
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Motivation: Exponential Sums

How to do inference in latent variable models?

Method 1: place prior on θ , sample p(θ ,z | x) (next time)

Method 2: maximize logp(x | θ) = log
(

∑z p(x ,z | θ)
)

“half-Bayesian”

How many terms in sum?

100 people, genders z1, . . . ,z100

2100 ≈ 1030 possibilities

Need a better strategy!
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Warm-up: Gaussian example

[on board: θ from z and z from θ ]
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Alternating Maximization

General observation (not just Gaussians):

If z known, argmaxθ logp(x ,z | θ) often easy

If θ known, computing p(z | x ,θ) often easy

Idea: alternate between updating θ and updating z, repeat until convergence
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EM Algorithm

Alternates between updating two variables, θ and q

q(z): matches p(z | θ ,x)
θ : optimizes Ez∼q(z)[logp(z,x | θ)]︸ ︷︷ ︸

average over z drawn from q

Formally: initialize θ (1) arbitrarily. Then for t = 1, . . . ,T :

q(t)(z)← p(z | x ,θ (t)) (E step)

θ
(t+1)← argmaxθ Ez∼q(z)[logp(z,x | θ (t))] (M step)

Can interpret as maximizing lower bound on logp(x | θ).
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EM Algorithm: Gaussian example

[on board]
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Recap

Many problems have unobserved structure / dependencies (hierarchical
models, hidden Markov models, ...)

Failing to model these can lead to wrong/overconfident predictions
(election forecasting)

Latent variables =⇒ exponential sum =⇒ need good algorithms!

EM algorithm: works when we can handle z and θ individually.
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