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21.1 Recap of Multi-armed bandits

In the previous lecture we introduced the multi-armed bandit problem. We saw examples of how
this problem arises in many different scenarios from search recommendation, advertising, and
markets. We also discussed the idea that an algorithm should trade off the exploration of the
different options available, and exploitation of its current knowledge of these options. Finally, we
looked at a frequentist algorithm, the upper confidence bound (UCB) algorithm. We saw that this
algorithm is ‘’optimal’ in the sense that it achieves a sublinear regret, meaning that it learns and
makes a decreasing number of mistakes as time grows.

In keeping with the previous topics we have covered in the class, in these notes we discuss the
Bayesian approach to solving a multi-armed bandit algorithm: Thompson Sampling.

21.2 Multi-Armed Bandit Setup

To begin, we first redefine the multi-armed bandit problem:

We consider a decision-maker who is given K options from which to choose. We refer to these
options as arms. Associated with each arm is a probability distribution over rewards which is
initially unknown to the decision-maker. The decision-maker chooses an arm, usually referred to
as pulling an arm, and receives a reward sampled from the corresponding reward distribution. This
process is repeated over and over again.

21.2.1 Mathematical Setup

We now introduce the formal mathematical setup of multi-armed bandits.

Let A denote a set of K arms. We will denote the reward distribution for arm a ∈ A by Pa. We
denote the choice of arm at time t by At, and we define Xt,At as the reward received at time t,
which is a random sample from distribution PAt .

Let n denote the total number of rounds. Then, our total reward is equal to

n∑
t=1

Xt,At .
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The goal is to find the arm a for which the mean of the corresponding distribution Pa is highest.
Informally, we will refer to this mean as “the mean of arm a”, and we will denote it by

µa := EZ∼Pa [Z].

The highest mean will be denoted by µ∗ := maxa µa. The arm with the highest mean (that is µ∗)
will be denoted a∗ := arg maxa µa.

We formally define regret as:

Rn = nµ∗ − E[
n∑

t=1

Xt].

In words, this is the difference between the best possible reward we could get if we knew which
arm was the best one, and the expected regret we actually incur.

We also define the suboptimality gap for arm a as:

∆a = µ∗ − µa.

This is the difference between the mean of the best arm, and a fixed arm a.

Finally, we let Ta(t) denote the number of times arm a is selected up to time t:

Ta(t) =
t∑

s=1

1{As = a}.

21.3 Thompson Sampling

Given this setup, we will now discuss the Thompson Sampling algorithm for stochastic multi-armed
bandits. The algorithm was first introduced in 1933 (!), and remains very popular in practice. In
contrast to UCB, Thompson Sampling explicitly allows us to make use of prior information. Indeed,
since it is a Bayesian algorithm, it makes use of posterior distributions as opposed to confidence
intervals.

The algorithm is as follows: given a prior over the mean of each arm πa(µa), at each round t =
1, 2..., the algorithm computes the posterior probability pa,t that arm a ∈ A has the highest mean
reward:

pa,t = P
(
µa = max

a′
µa′

∣∣∣∣ X1,A1 , ..., Xt−1,At−1

)
.

The choice of arm is then randomly sampled from the distribution pt over A, where each arm a ∈ A
has probability pa,t:

At ∼ pt

In practice, since the posterior distribution over each arm having the maximum mean is often hard
to compute, we often implement a simpler algorithm that nevertheless accomplishes the same task.
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Thompson Sampling Algorithm: At each round t = 1, 2...., you keep track of the posterior
distribution over µa, for each arm a ∈ {1, ...,K}, given all the samples you have observed from that
arm X1,a, ..., XTa(t−1),a:

Pa,t = P(µa|X1,a, ..., XTa(t−1), a).

You take one sample from Pa,t and choose the arm with the highest sample:

1. µa,t ∼ Pa,t for a ∈ {1, ...,K}.
2. Choose arm: At = argmax

a∈{0,1,...,K−1}
µa,t

Notice that P (a = arg maxa′∈A µa′ |X1, ..., Xt) = P
(
a = arg maxa′∈A µa′,t|X1, ..., Xt

)
by definition.

Remark 21.1. Note that since Thompson Sampling makes use of posterior distributions that you
need to sample from, it is mostly used when the posterior has a closed form or is a known distribu-
tion which is easy to sample from. In previous lectures we investigated the properties of conjugate
priors. Thompson Sampling is one scenario where conjugate priors are extremely useful because
the posterior is always guaranteed to remain in the same family given that the samples are from a
certain class of distributions and the prior is the conjugate prior for that family.

21.3.1 Regret of Thompson Sampling

We now analyze the pseudo-regret of Thompson Sampling when compared to UCB in a simulated
multi-armed bandit problem. The results are available in the Thompson Sampling demo posted on
the course website, and the solutions for Lab 8. We present them again below. To begin, we see
that Thompson Sampling displays sublinear regret and vastly outperforms UCB when the priors are
‘good’ (in the sense that they reflect the correct ordering of the arms’ means).

Figure 21.1: We see the pseudo-regret of Thompson Sampling on the Gaussian bandits from Lab
8 when the priors have the correct ordering of the means. Thompson Sampling in this case vastly
outperforms UCB (and clearly demonstrates sublinear regret.)

When the priors are ‘bad’ (in the sense that they have the complete opposite ordering of the arms’
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means), however, we see that Thompson sampling has a higher regret than UCB (though we em-
pirically observe that it is still sublinear).

Figure 21.2: We see the pseudo-regret of Thompson Sampling on the Gaussian bandits from Lab 8
when the priors have the incorrect ordering of the means. Thompson Sampling in this case incurs
higher regret than UCB (but still demonstrates sublinear regret.)

When the priors are the same for each arm and do not encode any information about the relative
ordering of the arms’ means we see that Thompson Sampling outperforms UCB once again:

Figure 21.3: We see the pseudo-regret of Thompson Sampling on the Gaussian bandits from Lab 8
when the priors are all the same for the arms. Thompson Sampling in this case outperforms UCB
(and clearly demonstrates sublinear regret.)
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