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Lecture 23: Introduction to Reinforcement Learning
Lecturer: Jacob Steinhardt

Today, we will start to think about how to make decisions in a time-series or sequential setting. We
will begin with a refresher on recursion and dynamic programming, and discuss Markov Decision
Processes (MDPs). MDPs will act as a jumping-off point for Reinforcement Learning (RL); RL
combines ideas of MDPs, learning from data, and function approximation. In the next lecture, we
will understand how these different pieces fit together.

23.1 Dynamic Programming

Dynamic programming is a general tool that makes recursion more efficient by intelligently reusing
the answer to previous function calls.

We will build up the idea of dynamic programming by considering a simple form of recursion: the
Fibonacci numbers. The sequence of Fibonnaci numbers is defined by:

f(0) = 0

f(1) = 1

f(n) = f(n− 1) + f(n− 2) ∀ n > 1

A naive program to compute this would have the following structure:

def f i b (n ) :
i f n == 0:

re turn 0
i f n == 1:

re turn 1
e l s e :

re turn f i b (n−1) + f i b (n−2)

The recursive tree for this function call will explode fairly quickly. For example, what happens if
we try to call fib(50)?
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This exponential blow-up in the computation tree is not ideal for processors, memory usage, et
cetera. However, one key observation we can make is that the same computation gets made several
times; for example, fib(48) gets computed times in the tree.

Memoization improves upon this naive recursive approach by caching and reusing the results of
previous function calls. The memoized version of our Fibonacci function would look something like
this:

memo = d i c t ()
def f i b (n ) :

i f n in mem. keys ( ) :
re turn memo[n]

i f n == 0:
memo[n] = 0

i f n == 1:
memo[n] = 1

e l s e :
memo[n] = f i b (n − 1) + f i b (n − 2)

re turn memo[n]

One nice this about the memoization approach is that it not too difficult to adapt a naive recursive
approach to a memoized approach. In fact, in Python it is particularly easy: there are function
decorators (e.g. @memoize) that will automatically memoize a recursive function. The memoized
version of a recursive function will blow-up only linearly rather than exponentially. While this is a
big win in terms of the amount of computation performed, memoization can still be problematic in
cases where the cache is large and the look-up step is very slow.

Dynamic programming is another improvement on top of memoization. Dynamig programming
“unrolls” the recursion into a for-loop by performing the computations in such a way that the
results of any previous computations required for the current step of the loop are always known.
This is preferable over naive recursions since it reuses computation, and over memoization since it
bypasses the need for performing look-ups. For our Fibonnaci example, a dynamic programming
approach would have the following structure:

f i b = zeros ( shape=(n+1, 1))
f i b [0] = 0
f i b [1] = 1
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fo r n in range (2 , n+1):
f i b [n] = f i b [n−1] + f i b [n−2]

Dynamic programming is fast compared to other approaches to recursion because it reduces the
problem to a loop. However, in order to take a dynamic programming approach, the computation
must be laid out in some nice way. For some problems, determining the right order to do the
computations is sufficiently complicated that one might prefer the ease of a memoization approach
even though its use of a cache is slower.

We will end this section with a slightly more complicated dynamic programming example that build
towards MDPs and RL. For this example, suppose we are driving a car along a linear route and are
trying to pick the optimal set of gas stations at which to stop. We start at location 0 and our goal
is to reach location N (which is N units to our right) without running out of gas. It costs 1 unit
of gas to move 1 unit to the right, and each gas machine at location i has gi units of gas available
for purchase for a cost of ci dollars per unit. How much gas should we buy at each location to
minimize the total cost?

We can frame this as a dynamic programming problem. First, we should consider what state we
need to keep track of to make a decision at each step. In this case, the two factors that affect our
decision are our current location and how much gas is currently in our tank. If we were to solve
this using recursion, our function f(loc, gas) should return the minimum cost to get to the end,
given the current state (loc, gas). This is an example of a cost-to-go function, which we will see
again in several of the upcoming MDP and RL examples. The pseudo-code for a naive recursive
approach would have the following structure:

def f ( loc , gas ) :
# Base case : we a l ready reached the goal
i f l o c == N:

re turn 0
# Base case : we ran out of gas
i f gas < 0:

re turn math . i n f

# Option 1: Buy 1 un i t of gas and s tay where we are
cos t1 = f ( loc , gas + 1) + p r i c e [ loc ]
# Option 2: Go forward 1 un i t
cos t2 = f ( loc + 1 , gas − 1)

re turn min( cost1 , cos t2 )

Note that if we start at the end and work our way backwards, we will always either already know
the answer (e.g. in the case of loc == N) or have previously done the computations required to
figure out the answer. Thus, a dynamic programming approach would have the following basic
structure, with one or two additional edge cases:

f = zeros ( shape=(N + 1 , N + 1))
fo r loc in range (N, 0 , −1):
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fo r gas in range (N, 0 , −1):
cos t1 = f [ loc , gas + 1] + p r i c e [ loc ]
cos t2 = f [ loc + 1 , gas − 1]
f [ loc , gas ] = min( cost1 , cos t2 )

23.2 Markov Decision Processes

MDPs generalize the dynamic programming idea of working backwards to stochastic decision-
making processes.

An MDP is defined by a sequence of states s ∈ S, a set of actions a ∈ A, and a transition function
T (s, a, s′) that gives the probability that the action a from state s leads to the new state s′ (e.g.
P(s′ | s, a), which is also called a model or the dynamics). We usually also have some reward
function R(s, a, s′), and would like to have a large cumulative reward. For example, the current
state s might denote where we currently are in the world, the action a might specify the direction
in which we’d like to move, and the transition function would give the probability distribution over
what outcome actually happens when we try to move this direction from our current location.

The “Markov” in Markov Decision Process refers to the fact that the transition function only depends
on the current state and the current actions, and not on the entire history of the process. One
intuition is to think of an MDP like a stochastic version of a search problem where we’re trying to
make an optimal action at each step based on all the things that could happen in the future (e.g.
trying to decide what move to make in a Chess game based on possible reactions to each move),
but in an MDP there is randomness involved in the potential future outcomes.

Often, we are interested in understanding what actions we should take at each step of the MDP. A
policy is a function π : S → A that specifies an action for each state. For any policy, π, it makes
sense to think about what the expected reward is under that policy, or about the distribution over
rewards under that policy. An optimal policy, denoted π∗, is the policy that maximizes the expected
reward. Typically, we are trying to maximize the expected cumulative reward over all time steps. It
is also reasonable, though, to prefer rewards now to rewards later. Discounting accounts for this
by down-weighting future time steps by some multiplicative factor γ, which can be interpreted as
accounting for some chance γ that the process could end at every step. Practically, discounting is
often used because it help algorithms converge.

23.3 Solving Markov Decision Processes with Dynamic Programming

There are several quantities of interest when working with MDPs, including:

• The value (or utility) of a state s, denoted V ∗(s), is the expected utility when starting in state
s and acting optimally

• The value (or utility) of a q-state (s, a), denoted Q∗(s, a), is the expected utility starting out
taking action a from state s and thereafter acting optimally
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Note that the Q∗ function is useful compared to V ∗ since the value function tells us what happens
when we act optimally, but does not help us understand which action to take. If we know the Q∗

function, we can determine a policy π∗.

We can define these quantities recursively. For example, we can write the value function as

V (s) = max
a∈A

∑
s′∈S

P(s′ | s, a) ·
(
R(s, a, s′) + V (s′)

)
,

or if we want to do discounting we can incorporate the discounting factor γ,

V (s) = max
a∈A

∑
s′∈S

P(s′ | s, a) ·
(
R(s, a, s′) + γV (s′)

)
.

Since this is a recursive formula, we can start thinking about what recursive approaches to solv-
ing for the value function would look like. In order to avoid infinite recursion issues due to the
randomness in the problem, we introduce a time horizon T :

def V( s , t ) :
i f t == T :

re turn 0
e l s e :

va l = −math . i n f
f o r a in a c t i o n s :

v = sum([ P( s ’ | s , a ) (R( s , a , s ’ ) + gamma ∗ V( s ’ , t + 1))
f o r s ’ in s t a t e s ])

va l = max( val , v )
re turn va l

We could use memoization on this recursion, but we could also think about using a dynamic pro-
gramming approach instead. This might looks something like the following pseudo-code:

V = zeros ( shape=(S , T+1))
fo r t in range (T−1, 0 , −1):

f o r s in s t a t e s :
V[ s , t ] = max([

sum([ P( s ’ | s , a ) (R( s , a , s ’ ) + gamma ∗ V[ s ’ , t + 1])
fo r s ’ in s t a t e s ])

f o r a in a c t i o n s ])

This lets us compute the value function over some time horizon. We can improve the efficiency of
this approach by noting that we do not actually need to store the full V array; at time t we only
ever need to know the value function at time t + 1. This means that we can just store a small
slice of V and run the algorithm for a very long time horizon without using additional memory.
This algorithm is known as the Value Iteration algorithm. In our next discussion, we will see this
algorithm in more detail and build up to a fuller picture of RL.
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